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Turbulence with pressure: Anomalous scaling of a passive vector field
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The field theoretic renormalization groURG) and the operator-product expansion are applied to the model
of a transversédivergence-freevector quantity, passively advected by the “synthetic” turbulent flow with a
finite (and not small correlation time. The vector field is described by the stochastic advection-diffusion
equation with the most general form of the inertial nonlinearity; it contains as special cases the kinematic
dynamo model, linearized Navier-StokésS) equation, the special model without the stretching term that
possesses additional symmetries and has a close formal resemblance with the stochastic NS equation. The
statistics of the advecting velocity field is Gaussian, with the energy spe@(kin-k!~® and the dispersion
law weck~2*7, k being the momenturfwave number The inertial-range behavior of the model is described
by seven regimegor universality classeshat correspond to nontrivial fixed points of the RG equations and
exhibit anomalous scaling. The corresponding anomalous exponents are associated with the critical dimensions
of tensor composite operators built solely of the passive vector field, which allows one to construct a regular
perturbation expansion is and »; the actual calculation is performed to the first or@@me-loop approxima-
tion), including the anisotropic sectors. Universality of the exponents, tieidependence on the forcing,
effects of the large-scale anisotropy, compressibility, and pressure are discussed. In particular, for all the
scaling regimes the exponents obey a hierarchy related to the degree of anisotropy: the more anisotropic is the
contribution of a composite operator to a correlation function, the faster it decays in the inertial range. The
relevance of these results for the real developed turbulence described by the stochastic NS equation is dis-
cussed.
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[. INTRODUCTION The most remarkable features of developed turbulence are
encoded in the single term of intermittency. This concept has
It has become a commonplace to complain that theoreticalo rigorous definition within the classical probabilistic
understanding of turbulence remains the last unsolved prolheory; an excellent introduction can be found in RBf.and
lem of classical physics. Of course, the concept of turbulencgnap. 8 Ref.[1]. Roughly speaking, intermittency means
refers to a great deal of disparate physical situatidas ¢ statistical propertieffor example, correlation or struc-
most as varied as in the realm of life,” R¢t], p. D and any 1o functions of the turbulent velocity figléire dominated
exhaustive and ultimate “theory of turbulence,” of course,b¥ rare spatiotemporal configurations, in which the regions

can hardly ever be established. There is, however, a cIassm&lth strong turbulent activity have exotiéracta) geometry

“list” of phenomena (or, rather, classes of phenomegrtlaat : . X .
represent and illustrate the main features of turbulence: eﬁgg ]fla(;\elzvembedded into the vast regions with reglmi-

istence and stability of solutions of hydrodynamics equa- . .
tions, convective turbulencein)stability of laminar flows In the turbulence, such a phenomenon is believed to be
and origin of turbulence, and so on. Those topics, which aréelated to strong fluctuations of the energy flux. Therefore,
of great practical and conceptual importance, have alway¥ !€ads to deviations from the predictions of the celebra-
remained the focus of attention for theoreticians. One oféd Kolmogorov-ObukhouKO) phenomenological theory
them is the fu||y deve|oped(h0mogeneou5, iso'[ropic7 [1—3] Such deviations, referred to as “anomalous” or “non-
inertial-range hydrodynamical turbulence. Detailed descrip- dimensional” scaling, manifest themselves in singukagu-
tion of this concept and the bibliography of this old but still ably power-likg dependence of correlation or structure func-
open subject can be found in the classical monogrph8].  tions on the distances and the integf@kternal turbulence
Turbulent flows that occur in various liquids or gases atscaleL. The corresponding exponents are certain nontrivial
very high Reynolds numbers reveal a number of general asnd nonlinear functions of the order of the correlation func-
pects(cascades of energy or other conserved quantities, scaion, the phenomenon referred to as “multiscaling.”
ing behavior with apparently universal “anomalous expo- Within the framework of numerous semiheuristic models
nents,” intermittency, statistical conservation laws, and sahe anomalous exponents are related to statistical properties
on), which support the hopes that those phenomena can k# the local dissipation rate, the fract@flaussdorf dimen-
explained within a self-contained and internally consistension of structures formed by the small-scale turbulent eddies,
theory. Recent developments in this area are presented atlie characteristics of nontrivial structuresrtex filamenty
summarized in Refl4]. and so on; see Ref$l—-3] for a review and further refer-
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ences. The common drawback of such models is that they apgogress has been achieved in understanding simplified
only loosely related to underlying hydrodynamical equationsmodel systems that share some important properties with the
involve arbitrary adjusting parameters and, therefore, cannatal problem: shell modelsl 2], stochastic Burgers equation
be considered to be the basis for construction of a systematjd 3], and passive advection by random “synthetic” velocity
perturbation theory in certain smakt least formal expan-  fields[14]. Although the shell models, discrete analogs of the
sion parameter; see, e.g., the remark in IR&f. Thus serious NS equation, exhibit pronounced anomalous scaling, it has
doubts remain about the universality of anomalous exponentsostly been studied within numerical simulations. The Bur-
and the very existence of deviations from the KO theory. gers equation with random or deterministic initial conditions

The term “anomalous scaling” reminds of the critical has been extensively studied analytically, and it exhibits
scaling in models of equilibrium phase transitions. In thosestrong intermittency and the energy cascade. The model is
the field theoretic methods were successfully employed tinteresting in itself and has various applicatiof@sg., de-
establish the existence of self-simil@gcaling regimes and ~ scription of the development of singularities in self-
to construct regular perturbative calculational scheilies  gravitating mattey but its relevance for the real hydrody-
famouse expansion and its relative$or the corresponding namical turbulence is far from obvious. In particular,
exponents, scaling functions, ratios of amplitudes, etc.; sedurgulence is a “turbulence without pressufé&1] and, what
e.g., Refs[7,8], and references therein. is more, without the energy conservatiGn more than one

Here and below, by “field theoretic methods” we mean dimension, while the conservation of energy and the energy
diagrammatic and functional techniques, renormalizatiorexchange between different velocity components are very
theory and renormalization group, composite operators anfinportant features of the genuine fluid turbulence.
operator algebra®perator-product or short-distance expan-  Probably the most important progress in the subject,
siong, instanton calculus, and so on. achieved in the last decade of the twentieth century, was

Of course, the analogy is far from exact. There is a bigrelated to a simplified model of the fully developed turbu-
difference between the concepts of critical scaling in equilibdence, the so-called rapid-change model. The model, which
rium phase transitions and anomalous scaling in turbulencelates back to classical studies of Batchelor, Obukhov, Kra-
Formally speaking, in both cases one deals with nontriviaichnan, and Kazantsev, describes a scalar or vector quantity
powers of the distance, but in the first case they are dividede.g., temperature, concentration of admixture particles, or a
by the ultravioletUV) scale¢, while in the second the same weak magnetic field passively advected by a Gaussian ve-
role is played by the integral, or infraré¢tR) scaleL. It was locity field, decorrelated in time and self-similar in space
hoped that a close analogy can be achieved if the momentuiithe latter property mimics some features of a real turbulent
space for turbulence be confronted with the coordinate spaogelocity ensemble
for critical phenomena. This idea was expressed in a phe- There, for the first time the existence of anomalous scal-
nomenological “dictionary,” where, in particular, the viscous ing was established on the basis of a microscopic midds)
length¢ (that is, the UV scale of turbulencevas confronted and the corresponding anomalous exponents were derived
with the correlation lengththat is, the IR scale of critical within controlled approximationgl6,17] and regular pertur-
phenomeng while the integral scalé was confronted with  bation schemegl8]. Detailed review of the recent theoreti-
the molecular length; see, e.g., REJ]. Hence the idea of cal research on the passive scalar problem and more refer-
“inverse” renormalization group; see R€f10] for a recent ences can be found in RéfL4].
discussion. It is important to emphasize here that the two alternative

The aforementioned phenomenon of multiscaling wagor complementary analytical approaches to the rapid-
also often opposed to critical scaling, because in the lattechange model are both field theoretic. In the “zero-mode
“everything is determined by just two exponengsand v.” approach,” developed in Ref§l6,17] (see also Ref{14]),

It has usually been stressed that the intermittency is esiontrivial anomalous exponents are related to the zero modes
sentially a strongly nonlinear phenomenon, and therefore, th@unforced solutionsof the closed exact differential equations
anomalous scaling in turbulence cannot be treated within angatisfied by the equal-time correlation functions. From the
kind of perturbation theory. Probably for this reas@nd field theoretic viewpoint, this is a realization of the well-
because of a very low quality of some related papéne  known idea of self-consistertbootstrap equations, which
field theoretic methods, for many years, have been ignored anvolve skeleton diagrams with dressed lines and dropped
taken with a strong skepticism by the turbulent community.bare termgsee, e.g., Sec. 4.35 in R¢8]). Owing to special
The sharpened formulation of the state of the art, given irfeatures of the rapid-change modédisearity in the passive
Ref. [1], is that the results obtained by diagrammatic methfield and time decorrelation of the advecting fielsuch
ods are either wrong or can be derived by much simpleequations are exactly given by one-loop approximations, and
methods(pp. 214—21% Another, and in a sense opposite, the resulting equations in the coordinate space are differen-
point of view was expressed in Réfl1]: “... the reason tial (and not integral or integro-differential as in the case of a
(that the problem of turbulence is still not solydigs in the  general field theony In this sense, the model is “exactly
fact that the necessary field theoretic tools have appearesbluble.” Furthermore, in contrast to the case of nonzero
only recently.” correlation time, closed equations are obtained foretineal-

Although the theoretical description of the fluid turbu- time correlations which are Galilean invariant and, there-
lence on the basis of the stochastic Navier-Stqk&3) equa-  fore, not affected by the so-called “sweeping effects” that
tions remains essentially an open problem, considerableould obscure the relevant physical interactions.
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In this connection, it should be noted that, due to the timestochastic hydrodynamics were introduced and investigated
decorrelation, in the rapid-change model there is no problenn detail in Ref.[23]; detailed discussion of the NS case can
in relating Eulerian and Lagrangian statistics of the velocitybe found in the review pap¢24], the monograpip25], and
field: they are identical. This allows one to perform very Chap. 6 of Ref[8]. Later, the idea of negative dimensions
accurate numerical simulations in the Lagrangian frame; sewas repeatedly introduced in connection with the anomalous
Ref.[20]. scaling in turbulenc§26], models with multifractal behavior

From a more physical point of view, zero modes can bg27], and the phenomena related to the Burgers equation
interpreted as statistical conservation laws in the dynamics df11,2§.
particle clusterg19]. The concept of statistical conservation  The RG analysis of Ref.18] has shown that dangerous
laws appears rather general, being also confirmed by numefgperators are indeed present in the rapid-change model, and
cal simulations of Refd21,22, where the passive advection that their dimensions can be calculated systematically within
in the two-dimensional NS velocity fielf?1] and a shell 4 regular perturbation expansions, similar to the fameus
model of a passive scalp22] were studied. This observation gynansion of the critical exponents. Owing to the linearity of

that the advecting velocity has a finite correlation tiffar a given structure function, which allows one to identify the

passive f'eld. advected by a velocity with given SJ.[""t's'“cs’corresponding anomalous exponent with the critical dimen-
closed equations can be derived only for different-time cor-

relation functions, and they involve infinite diagrammatic se->1oN of an individual composite operator. The actual calcula-
fies) tions were performed to the secolid] and third[29] orders

The second systematic analytical approach to the rapid'-n & (two-loop and three-loop approximations, respectively
change model, proposed in papés], is based on the field Generalizations to the cases of compresdiB®&31] and an-

theoretic renormalization groufRG) and operator-product 1SOtropic [32] velocity ensembles and the vector advected
expansionOPBE. field [33—-37 have been obtained.

To avoid possible confusion, it should be explained thatin ~ The two approaches complement each other very well: the
Ref.[18] and subsequent papers, the conventional renormakero-mode technique allows for ex&ctonperturbative so-
ization group(and not the inverse RG in the spirit of Refs. lutions for the anomalous exponents related to second-order
[9,10) was employed, which is based on the standard renorcorrelation function$16,38—4qQ (they are nontrivial for pas-
malization proceduréelimination of UV divergences The  sive vector fields or anisotropic sectors for scalar figlds
solution proceeds in two main stages. In the first stage, thevhile the RG approach form the basis for systematic pertur-
multiplicative renormalizability of the corresponding field bative calculations of the higher-order anomalous exponents
theoretic model is demonstrated and the differential RG18,29—-31. For the cases of anisotropic velocity ensembles
equations for its correlation functions are obtained. Theor/and passively advected vector fields, where the calcula-
asymptotic behavior of the latter on their UV argumenit)  tions become rather involved, all the existing results for
for r>¢ and any fixed (/L) is given by IR stable fixed higher-order correlation functions were derived only by
points of those equations. It involves some “scaling func-means of the RG approach and only to the leading order in
tions” of the IR argument /L), whose form is not deter- [32-37.
mined by the RG equations. In the second stage, their behav- Besides the calculational efficiency, an important advan-
ior atr<L is found from the OPE within the framework of tage of the RG approach is its relative universality: it is not
the general solution of the RG equations. There, the crucigbound to the aforementioned “solubility” of the rapid-
role is played by the critical dimensions of various compositechange model and can also be applied to the case of finite
operators, which give rise to an infinite family of indepen- correlation time or non-Gaussian advecting figld—43.
dent scaling exponentand hence to multiscaling It has been usually stressed that intermittency and anoma-

Of course, both these stag@sd thus the phenomenon of lous scaling in turbulence are signatures of highly nonlinear
multiscaling have long been known in the RG theory of nature of underlying dynamics. The main lesson that can be
critical behavior, where the OPE is used in the analysis of théearned from the rapid-change model is, probably, that such
small-(r/L) form of the scaling functions; see, e.g., Refs.phenomena can be encountered in a model, which is linear in
[7,8], and references therein. The distinguishing feature, spehe passive field, and in which the advecting velocity field is
cific to models of turbulence, is the existence of compositeGaussian and nonintermitte@h contrast to a more realistic
operators withnegativecritical dimensions. Such operators case of the stochastic NS equatioWhat is more, the RG
are termed “dangerous,” because their contributions to theand the OPE approach show that intermittetatyleast in the
OPE diverge atr/L)—0. In the models of critical phenom- rapid-change modglcan be essentially a perturbative phe-
ena, nontrivial composite operators always have strictly posinomenon, in the sense that it is contained completely already
tive dimensions, so that they only determine correctionsn the ordinary(primitive) perturbation theory around a free
[vanishing for ¢/L)—0] to the leading termgfinite for  (Gaussiah approximation. The infinite resummation of the
(r/L)—0] in the scaling functiongthe leading terms are primitive perturbation series, performed by the RG and OPE,
related to the simplest operator unity with zero critical di- gives rise to improved representations of the correlation
mension. functions, which reveal anomalous scaling behavior. On the

The OPE and the concept of dangerous operators in thether hand, these representations can be expanded back and
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reproduce the original perturbation series, no less and nproblem and it requires considerable improvement of the
more. present techniques.

Existence of exact solutions, regular perturbation As the intermediate step in the investigation of intermit-
schemes, and accurate numerical simulations allows one tency and anomalous scaling it is important to study simpli-
discuss, for the example of the rapid-change model and itSed models that are, in a number of respects, closer to the
relatives, the issues that are interesting within the generakal NS turbulence but still allow for analytical treatment. An
context of fully developed turbulence: universality and satuimportant step is breaking the artificial assumption of the
ration of anomalous exponents, effects of compressibilityfime decorrelation of the advecting velocity field; see the
anisotropy and pressure, persistence of the large-scale anisoémarks in Refs[21,22].
ropy and hierarchy of anisotropic contributions, convergence In Refs.[41,47 (see also Ref[43] for the case of com-
properties and nature of theexpansions, and so on. pressible flowthe RG and OPE were applied to the problem

So far, however, aforementioned field theoretic method®f a passive scalar advected by a Gaussian self-similar ve-
have had only limited success when applied to the real fluidocity with finite (and not smajlcorrelation time. The energy
turbulence or, better to say, to the stochastic NS equation. spectrum of the velocity in the inertial range has the form

The main problem of the self-consistency approach to th& (k) <k ~2¢, while the correlation time at the momentum
stochastic NS equation is the elimination of the kinematicscales ag 2" 7. It was shown that, depending on the values
sweeping effects, which obscure relevant physical interacef the exponents and#, the model reveals various types of
tions and lead to a spurious strong dependence of the correertial-range scaling regimes with nontrivial anomalous ex-
lation functions on the integral scale. This problem wasponents, which were explicitly derived to the fifgt1,43
claimed to have been solved using the so-called internal disand secondl42] orders of the double expansion énand .
grammatic techniqupd4], but it leads to the violation of the Earlier, a similar model was proposed and studied in detail
translational invariance. Probably for this reason no attemptéusing numerical simulations, in two dimensigria Ref.
have been made to explicitly solve the resulting equations g#6]. Various aspects of the transport and dispersion of par-
least in the simplest one-loop approximation. ticles in random Gaussian self-similar velocity fields with

The standard RG approach to the stochastic NS equatidinite correlation time were also studied in Rgi$7—49.
allows one to prove the independence of the inertial-range Another important step toward the NS turbulence is to
correlation functions of the viscous scale second Kol- consider the turbulent advection of passiestorfields. The
mogorov hypothesjsand calculate a number of representa-latter can have different physical meaning: magnetic field in
tive constants within a regular expansions in a reasonable the Kazantsev-Kraichnan model of hydromagnetic turbu-
agreement with experiment; see, e.g., RE824,29 for a  lence in the kinematic approximation; perturbation in the lin-
review and Ref[45] for the most recent results. The problem earized NS equation with prescribed statistics of the back-
of the anomalous scaling, that is, the dependence of thground field; density of an impurity with internal degrees of
Galilean-invariant correlation functions on the IR scale freedom, etc.
still remains open, probably due to the lack of an appropriate Despite the obvious practical significance of these physi-
expansion parameter. Dangerous operators in that model acal situations, the passive vector problem is especially inter-
absent in thee expansions and can appear only at finiteesting because of the insight it offers into the inertial-range
values ofe. This means that they can be reliably identified behavior of the NS turbulence. Owing to the coupling be-
only if their dimensions are deriveekactlywith the aid of  tween different components of the vector fiélwbth by the
Schwinger equations or Galilean symmetry. Due to the nonedynamical equation and the incompressibility conditiand
linear nature of the problem, they enter the correspondingo the presence of a new stretching term in the dynamical
OPE as infinite families whose spectra of dimensions are natquation, which couples the advected quantity to the gradient
bounded from below, and in order to find their dependenc®f the advecting velocity, the behavior of the passive vector
on the IR scald one has to sum up all their contributions. field appears much richer than that of the scalar fiéld.: .

The needed summation of the most singular contributionsthere is considerably more life in the large-scale transport of
related to the powers of the velocity fieltheir critical di-  vector quantities,(p. 232 of Ref[1]). Indeed, passive vec-
mensions are known exactlywas performed in Refl23] tor fields reveal anomalous scaling already on the level of the
with the aid of the so-called infrared perturbation theory forpair correlation functior38]. They also develop interesting
the case of the different-time pair correlation functions. It hadarge-scale instabilities that can be interpreted as manifesta-
revealed their strong dependencelgmwhich physically can tion of the dynamo effecfin kinematic approximation see,

be explained by the aforementioned sweeping effects. This.g., Refs[38,50,51. Other important issues are mixing of
demonstrates that, contrary to what is sometimes claimed;omposite operators, responsible for the anomalous scaling,
these effects can be properly described within the RG apand the effects of pressure on the inertial-range behavior,
proach, but one should combine the RG and OPE techniquesspecially in anisotropic sectors.

and go beyond the plaia expansions. Analysis of the In the scalar case, the anomalous exponents for all struc-
dependence of the Galilean-invariant objects such as theire functions are given by a single expression which in-
structure functions requires the explicit construction of allcludesn, the order of a function, as a paramefé6-19.
dangerous invariant scalar operators, exact calculation ofhis remains true for the vector models with the stretching
their critical dimensions, and summation of their contribu-term[33,35. In the special vector model without the stretch-
tions in the corresponding OPE. This is clearly not a simpldang term, considered e.g. [86,37], the number and the form
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of the operators entering into the relevant family depend es- In Sec. Il we give detailed definition of the general vector
sentially onn, and different structure functions should be model and the advecting velocity ensemble and discuss its
studied separately. As a result, no general expression valigiteresting special cases: the rapid-change and frozen re-
for all n exists in the model, and the anomalous exponentgimes, kinematic dynamo model and linearized NS equation,
are related by finitdéamilies of composite operators rather and so on. We give the field theoretic formulation of the
than by individual operatorf36,37. In this respect, such a original stochastic problem and present the corresponding
model is closer to the nonlinear NS equation, where théliagrammatic technique. In Sec. Il we analyze the UV di-
inertial-range behavior of structure functions is believed to/ergences of the model, establish its multiplicative renormal-
be related with the Galilean-invariant operators, which formizability, and present the renormalization constants in the
infinite families that mix heavily in renormalization; see ON€-loop approximation. In Sec. IV we analyze possible scal-
Refs.[24,25. ing regimes of the quel, as_souated with nontr|V|_aI and

Another important question that can be addressed for thBhysically acceptable fixed points of the corresponding RG
passive vector model is the effects of nonlopalssureerms ~ €duations. There are seven such regimes, any one of them
on the anomalous scaling, in particular, the consistency ofan be realized depending on the values of the model param-
the hierarchical picture for the anisotropic anomalous contri®t€rs €, 7, and others We discuss the physical meaning of
butions, known for the pressureless scdlt,43,53 and thgsg r_eglmese.g._, some of them corre;pond to zero, finite,
magnetic[39,33 cases, with the presence of nonlocal terms®' |_nf|n|te correlgtlon.tlme of the adyectmg f|elld, to .the mag-
in the closed equations for the correlation functions, causefetic case, or linearized NS equaticend their regions of

by the pressure contributiofi3] (a more detailed treatment Stability in the space of the model parameters. In Sec. V we
is given in Ref.[37)). give the scaling representation for a general correlation func-

The general vector model, introduced in RE35], in- tion and present the general expression for the critical dimen-
cludes as special cases the kinematic magnetic model, lineaon of & composite fieldoperatoy. Then we consider the
ized NS equation, and the special model without the stretchT0St interesting case of tensor composite operators built
ing term, and thus allows one to control the pressurénly of the passive vector field, which play a crucial role in
contribution and quantitatively study its effects on the further discussion of the anomalous scaling. The critical di-
anomalous scaling. The generalized model also naturall}“ens'on of such an operator with arbitrary number of the
arises within the multiscale technique, as a result of the veri€lds and vector indices is presented to first ordes inz.
tex renormalizatiori1]. In Sec. VI we introduce the operator-product expansion and

Finally, it should be noted that, as the experience with th&lemonstrate its relevance to the issue of inertial-range
passive fields shows, the stochastic NS equation will shoy@nomalous scaling. We show that the anomalous exponents
anomalous scaling already in its linearized form. Thus thdh our model can be identified with the critical dimensions of
results obtained for the passive vector quantity, with an apaforementioned composite operators and present the leading
propriate statistics of the background field, can be consideret@ms of the inertial-range behavior for a number of correla-
as an approximation to the full-fledged NS problem, which,tion functions. In Sec. VIl we show that the anomalous ex-
in principle, can be systematically improved by including ponents of_anlsotroplc contrlbuthns,_determmed by the criti-
nonlinear term as the perturbation. It was also argued thaEa| d_|mens_|ons of tensor composite fields, obey the hierarchy
with a proper choice of the random stirring, the passive veclelations similar to those known .for the passive scalar and
tor model can reproduce the anomalous exponents of the N&gro-correlated cases. We also discuss the_ glependence of the
velocity field exactly[54]. anomalous exponents on the compressibility and pressure,

The aforementioned works, however, have mostly bee@nd the effects of these factors on the hierarchy relations.
confined with the Kraichnan velocity ensemble with zero The results obtained are briefly reviewed and discussed in

correlation time. the Conclusion.

In the present paper, we consider the model of the passive
vector field Wltf;] the mc;]st _gene:al form of the Inonll'n;]aar tfe.rr.n, Il. DESCRIPTION OF THE MODEL: THE FIELD
advected by the synthetic velocity ensemble with a finite THEORETIC EORMULATION

(and not sma)l correlation time. The advected velocity field
is Gaussian, with the inertial-range spectrum of the form Here and below, we denote={t,x}, J,=d/dt, 9,
E(k)<k'~2¢ and the dispersion law=k?~ 7, wherek is the ~ =d/dx;, and d is the (arbitrary dimensionality of thex
momentum(wave number Thus we generalize the general space.
vector model studied in Ref.35] for the zero-correlated We confine ourselves to the case of transverse
case, to the ensemble of the advecting velocity field em{divergence-freg passive vector field;(x), while the ad-
ployed, e.g., in Refd41-43 for the case of passive scalar. vecting fieldv(x)={v;(x)} may have a longitudinalpoten-

We shall study anomalous scaling, stability of the scalingtial) component, so thap;#,=0 and d,v;#0. Thus the
regimes and analytically derive the anomalous exponents tadvection-diffusion equation has the form
the first order ine~ 7. This allows us to investigate the

umversaht.y_c.)f the anomalous exponents and the effects of 0,6+ VO = AN+ 3P= 126, + 1, 2.1)
compressibility, pressure, correlation time, and large-scale

anisotropy on the inertial-range anomalous scaling. The plan

of the paper is as follows. with the nonlinear terms
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Vl(l)EaJ(UJQJ; VI(Z)E&](U|01):0J(911}| . (22) 90U0K8k4_d_28_”
D,(w,k)=

5 P (2.6
Here A, is an arbitrary parameteP(x) is the pressures is w”+[Ugkok™ 7]
the diffusivity, 9° is the Laplace operator, anfj(x) is a

Gaussian stirring force with zero mean and correlator For the energy spectrum of the fiedwe thus obtairg(k)

=k fdwD,(w,k)=gox3k! 2*. Therefore, the coupling
(Fi00f;(xX)y=8(t—t') Cy(r/L), r=x—x". (2.3 const_antg0>0 and the exponent describe the equal-time
velocity correlator or, equivalently, the energy spectrum,
The parametek is an integral scale related to the stirring and While the constanti,>0 and the exponeny are related to
Cj; is a dimensionless function finite ds—c. Its precise  the frequencyw=uokok?"” characteristic of the mod.
form is unessential; for generality, it is not assumed to beThe factorxg in the numerator of Eq(2.6) is explicitly iso-
isotropic. The forcef;(x) maintains the steady state of the lated for the convenience later on.
system and gives rise to nonzero correlation functions of the The exponents and 5 are the analogs of the RG expan-
field 6. In a more realistic formulation it is replaced by an sion parametee=4—d in the theory of critical behavior,

imposed nonzero mean valgé), see, e.g., Ref$39,33. and we shall use the traditional terna ‘expansion” for the
Nonlinear terms are chosen in the form of total deriva-double expansion in the-» plane around the origia = »
tives, so that Eq(2.1) is the conservation law fo# and, for =0, with the additional convention thaj=0O(e). The IR

Ao=1, gives the well-known equation for the magnetic field regularization is provided by the cutoff in integr@l5) from
in the hydromagnetic problem. The amplitude factor in frontbelow atk=m, wherem~1/L is the reciprocal of the inte-
of the first nonlinear term in Eq2.1) can be absorbed by gral scale. Dimensionality considerations show that the cou-
rescaling of the velocity field and thus we set it to unity. Thepling constantsy,, U, are related to the characteristic UV
third possible structuré/(¥=g;(v;6;), can be absorbed into momentum scalé ~1/¢ by
the pressure term;P. 2 .

Besides the magnetic casd{=1), model(2.1) includes Go=A™, Up=AT. 2.7
as s_p_eC|aI cases the Ilnearlzgd NS_equatlon with prescribed Model (2.5) and(2.6) contains two special cases that pos-
statistics of the background fielddg=—1), and the model (.oc some interest of their own. In the linoig—cc, g;

of passively ad_\{ected vector impuritydg=0), which POS- =(,/Up=const, we arrive at the rapid-change model:
sesses an additional symmetey,» 6+ const, and has an in-

trinsic formal resemblance with the stochastic NS equation; D, (w,k)—goko k=97¢, (=2e—17, (2.9
see Ref[36]. In these examples, the vector field has different
physical interpretations: magnetic field, weak perturbation oind the limituy,— 0, go=const corresponds to the case of a
the prescribed background flow, concentration or density offrozen” velocity field (or “quenched disordery:
the impurity particles with an internal structure.

Owing to the transversality condition, the pressure can be D, (@,K)—gorgk 42 * 7 8(w), (2.9

expressed as the solution of the Poisson equation, . o ,
then the velocity correlatof2.5) is independent of the time

(;ZPZ(AO_l)(;iaj(ngi)_ (2.4)  variablet—t’ in thet representation.
The stochastic probleri2.1), (2.3), and(2.5) is equivalent
For A,=1 (magnetic casethe pressure vanishes. In this to the field theoretic model of the extended set of three fields
case Eq(2.1) also describes dynamics of the vorticity field ®={6’,6,v} with action functional
E\ﬂ\./ected by a given background velocity field, see, e.g., Ref. S(D)= 0D 012+ ' — 3+ g6~ VD A V2]
In the real problem, the velocity(x) satisfies the NS —vD-v2 (2.10
equation, probably with additional terms that describe the v '
feedback of the advected fiele(x). We shall begin, how- with V(2 from Eq. (2.2). This means that statistical aver-
ever, with a simplified model where the statisticsvfk) is  ages of random quantities in the original stochastic problem
given: it is a Gaussian field with zero mean and correlationcan be represented as functional averages with the weight
function expS(®). The first five terms in Eq(2.10 represent the so-
called Martin-Siggia-Rose action for the stochastic problem
, dow dk (2.1) and (2.3 at fixedv (see, e.g., Ref§8,24,25, and ref-
(Lix)vj(x"))= f ﬁf (ZT)d{Pij(k)“L @Q;j(K)}Dy(w,k) erences therejnwhile the last te%m represents the Gaussian
averaging overk. HereD; andD, are the correlation func-

Xexg —i(t—t")+ik-(x—=x")]. (2.5 tions (2.3) and(2.5), respectively,0’ = 6/ (x) is an auxiliary
transverse vector field, the required integrations oxer
Here Pj;(k)=&;—kik;/k* and Q;(k)=kik;/k? are the =(t,x) and summations over the vector indices are implied,

transverse and the longitudinal projectors, respectivelg,  for example,
the dimensionality of thex space,a=0 is a free parameter
(=0 corresponds to the divergence-free advecting field, . ,
d,v;=0). For the functiorD, we choose 0'9c9= | dtdx6; (t,x)d; 6i(t.x).
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TABLE |. Canonical dimensions of the fields and parameters inFrom the table it follows that the model is logarithniibe

model(2.10. coupling constantgg, Uy are dimensionlegsts = =0, so
that the UV divergences in the correlation functions have the
m=1/L, a.u, form of the poles ine, 7, and their linear combinations.
F 6 0 v vy A gy U AAa The total canonical dimension of an arbitrary one-
dk 0 d -1 -2 1 % 7 0 irreducible_ correlati(?(n functiol=(® - - - ®), ;. is given by
¢ -12 12 1 1 0 0 0 0 the relation dr=dy+2dy=d+2-Ngds, where Ng
de -1 d+1 1 0 1 % 7 0 ={Ny,N, ,N,} are the numbers of corresponding fields en-

tering into the functiord”, and the summation over all types
of the fields is implied. The total dimensiah is the formal
The pressure term can be omitted in functio(®alL0 owing index of the UV divergence. Superficial UV divergences,
to the transversality of the auxiliary field: whose removal requires counterterms, can be present only in
those functiond” for which dr is a non-negative integer.

Analysis of the divergences in our model can be aug-
mented by the following considerations

(i) From the explicit form of the vertex and bare propa-
Of course, this does not mean that the pressure contributio(‘[,lators it follows thatN,, — N ,= 2N, for any one-irreducible
can simply be neglected: the fiell acts as the transverse correlation function, wherdl,=0 is the total number of bare
projector and selects. the transverse part of the expression Btopagatorg 66), entering into the function. Therefore, the
the square brackets in E(.10. _ differenceN, — N, is an even non-negative integer for any

Model (2.10 corresponds to a standard Feynman d'a'nonvanishing function; cf. Ref§18,41,43.
grammatic technique with the triple vertex'[ -V (i) For any model with the Martin-Siggia-Rose-type ac-
+Aov@®] and bare propagators in the frequency-tion, all the one-irreducible functions witN, =0 contain
momentum ¢ —k) representation closed contours of retarded propagatof®’), and vanish;
see, e.g., Ref$8,24,25.

f dXGi'é?iP: - f dXP(?' Hi' =0.

(6,6) __ Pk (iii) If for some reason a number of external momenta
17370 (—iw+K0k2)’ occurs as an overall factor in all the diagrams of a given
Green function, the real index of divergendg is smaller
Cij(k) . thandr by the corresponding numbéhe correlation func-
(6; 0j>0:(w2+ 2K (67 605)0=0, (2.1)  tion requires counterterms only df. is a non-negative inte-
0

gen; see, e.g., Ref$8,24,23. In model(2.10, the derivative
where Cj;(k) is the Fourier transform of the function Qat th’e vgrtexﬁ’[.—v(l)+{40V(2)] can be moved onto the
Ci;(r/L) from Eq.(2.3); the bare propagatdb;v;), is given f|eld_0 using 'Fhe mtegra/tlon by parts, which Qiecre,ases the
by Eq. (2.5). real index of divergencedr=dr—Ny, and the fieldd’ en-
ters the counterterms only in the form of the derivativg.
IIl. UV RENORMALIZATION: RG FUNCTIONS From the dimensions in Table | we fird=d+2—N,
AND RG EQUATIONS + Ng_— (d.+ 1)_N,,, and dp=(d+2)(1—Ny)+Ny—N,.
Bearing in mind thalN, =N, we conclude that for any,
The analysis of UV divergences is based on the analysisuperficial divergences can exist only in the one-irreducible
of canonical dimensions. Dynamical models of ty(@2e10), functions (0'),, with dp=dj=1, (8’ 6),; with dp=2,
in contrast to static models, have two scales, i.e., the ca_non&f: 1, and(#’ 6v),;, with dp=1, dj-=0. The correspond-
cal dimension of some quantify (a field or a parameter in ing counterterms necessarily reduce to the fos's (which
the actlon_functl_onaklls described by two numbgrs, the mo- \anishes identically 6’326, 6'VD, and 9'V® with V(12
mentum dimensiod and the frequency dimensiaff ; see,  from Eq.(2.2). The structure’ 4,6 does not contain a spatial
eg., Rffs- [8,34'25- They are determined so thdF]  derivative, whiled’ V® with V{¥=4,(v;6;) has the form of
~[L] 9[T] %, whereL is the length scale andl is the  a total derivative and vanishes after the integration over
time scale. The dimensions are found from the obvious nor- We thus conclude that our mod@.10 is multiplicatively
malization conditionsdf=—d¥=1, d¢=d¢=0, d=d¥ renormalizable and the corresponding renormalized action
=0, d?=—d{=1, and from the requirement that each termhas the form
of the action functional be dimensionlesgith respect to the S~ ,
momentum and frequency dimensions sepalcr);ateTy]en, SR(®)=0'D0'/2+ 0'[ = o+ kZ, 5?0 = Z,V D+ Z, AVP)]
based ord¥ andd?, one can introduce the total canonical —vD /2. (3.1
dimensiondF=d'§+2d,‘§ (in the free theoryg,=?), which ’
plays in the theory of renormalization of dynamical modelsHere and belovg, u, «, and.A (without a subscriptdenote
the same role as the conventioaiomentum dimension the renormalized analogs of the corresponding bare param-
does in static problems. eters(with the subscript D The correlation functiorD,, in
The dimensions for modegl2.10 are given in Table I, Eq. (3.1) should be expressed in terms of the renormalized
including the parameters which will be introduced later on.parameters and;=2;(g,u,A,«a,e,7,d) are the renormal-
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ization constants. The introduction of the counterterms is resality of the vertexd! [ V(") —V{?)] with respect to the index
produced by the multiplicative renormalization of the veloc-of the field §'. The same property holds for all the diagrams

ity field, v—Z,v, and the parametery, Uy, kg, and.Ag in

the action functiona(2.10:

A(): ZAA
(3.2

Ko=KZ,, Ug=Um"Z,, Qo= gﬂzszg ;

Here u is the reference magadditional arbitrary parameter
of the renormalized theoyyand the renormalization con-

stants in Eqs(3.1) and(3.2) are related as follows:

2,=212,%, 7,=7.%, Z,=Z,Z2;'. (3.3

The first two relations in Eq.3.3) result from the absence of

the renormalization of the term witD, in Eq. (3.1). No
renormalization of the field®),#’ and the parameterm
~1/L and« is required, i.e.Z,=1 and so on.

of the one-irreducible functiof®’ 6v),_;, and, as a result, for
the corresponding counterterm, cf. Rd#55,56 for the case
of the active magnetic field interacting with the NS velocity
field.

In the rapid-change limity— o, g/u®=const) we obtain
Z,=2Z,=1 due to the fact that all the diagrams of the func-
tion (6’ v )., contain effectively closed circuits of retarded
propagators 86’ ), and therefore vanish; it is crucial here
that the correlation functiori2.8) is proportional to thes
function in time representation. On the contrary, in the frozen
limit (u—0, g/u=const) the constantZ,, remain non-
trivial.

One also obtaing,;=27,=1 for A=a=0. In this case, the
derivative 3 at the only vertexd! V(Y= 6/ (vd)6; can be
moved onto either field® and #’, so that the real index of

We have calculated all the renormalization constants injjyergence takes on the fora{-=dr—N,~ N, (we recall

the one-loop approximatioffirst order ing). The resulting

expressions are rather cumbersome: they are given by in
nite series in the parametarwith the terms containing the

poles in 2 +sy with s=1,2, ..., cf.Refs.[41,43 for the

that dj.=dr—N, for general A and «). This givesd

fiz 1 for Ny,=N, =N,=1, so that the functiofd’ 6v),;

is UV finite; cf. Ref.[41] for the scalar case. In other words,
the counterterm to the vertex must include two derivatives

scalar case. For this reason, below we give them only for th?one for the fieldd and one ford'), which is forbidden by the
special casey=0 and arbitrar. It is important here that the dimensionality considerations.

parametere alone provides the UV regularization for the

theory, so that the constanfsremain finite atp=0. In the
minimal subtractionfMS) scheme they have the form

B 9Sy
1= 1% 4d(1+u)2s (

Al-A) (1-A4)
(d+2)  “(d+2)

+0(g?),
(3.49

(1-A)
C(d+2)

(1-A)
Y A(d+2)

22:1+ 931 [a
4d(1+u)?e

+0(g?),
(3.4b

« 4(1+u)8{x+(a—1)y}+0(92),

(3.40

where

2(u+2)(1—.A4)?
(u+1)d(d+2) "’
(3.59

2(1-A)

d(d+2)(u+1)°
(3.5b

- (1—A)2 2

N RS

1+ A=A (1-A)7 2
V=4 T4d+2) du+1)

Here and belovB,=Sy/(27)® andSy= 2744 T (d/2) is the
surface area of the unit spheredrdimensional space.

The explicit expressiong3.4) illustrate some general

properties of the renormalization constadts,, valid to all
orders ing.

For the magnetic casd=1 we haveZ,=Z, and, there-
fore, Z ,=1 and the parameted, is not renormalized:4,
=A=1. This is a consequence of the relatigff V"

Finally, from Egs.(3.4) it follows thatZ, ,=1 for A=1
and a=0. We found no general explanation for this relation,
but checked that it remains true in the two-loop approxima-
tion, so that we can only guarantee tat,=1+ o(g®).

Let W(ey) be some correlation function in the original
model (2.10 and Wg(e,u) its analog in the renormalized
theory with action(3.1). Heree, is the complete set of bare
parameters ane is the set of their renormalized counter-
parts. In the following, we shall not be interested in the cor-
relation functions involving the velocity field. Then the
relation S(0,6',Z,,v,ey) =Sg(6,6',v,e,u) for the action
functionals yields W(ey) =Wg(e,n) for any correlation
function of the fields#’, ; the only difference is in the
choice of variables and in the form of perturbation the@ny
g instead ofgy).

We useT)M to denote the differential operatignd,, for
fixed e, and operate on both sides of this equation with it.
This gives the basic RG equation

DrcWg(€,1)=0, (3.6)

whereDgg is the operationf)ﬂ expressed in the renormal-
ized variables

DRGED#+ﬁgﬁg+IBU(9u+BA(?A_ Y«D - (3.7

In Eq. (3.7), we have writterD, = xd, for any variablex, the
RG functions(the 8 functions and the anomalous dimensions
v) are defined as

y=D,InZ (3.9

—V{)1=0 for vectors(2.2), which expresses the transver- for any renormalization consta# and

046306-8



TURBULENCE WITH PRESSURE: ANOMALOS . ..

BgEbug: Zg[_8+ Y™ 71]1
BUET)MUZ U[_ 7+ YK]’
B4=D,A=Aly1— 7,]. (3.9

The relations betweep and y in Eq. (3.9 result from the
definitions and relationé3.3).

For the basis anomalous dimensions from the definition&€rSe, 7,

and expression&3.4) in the one-loop approximation we ob-
tain

_ R AL-4)  (1-4) ,

71_2d(1+u)2 T A2 “d+2 +0(99),
(3.103

98 [ (A4 (1-A) ,

72_2d(1+u)2 YT d+2) Y Ad+2) +0(99),
(3.10b

BCE )

Vo= g q gy e DI+0(g), (3100

with X and) from Eq. (3.5). It is also worth noting that the
knowledge of the constan&at »=0 is in fact sufficient to
calculate thegB functions (3.9 for all 7, & because the
anomalous dimension&3.10 are independent of;, &, at

PHYSICAL REVIEW E 68, 046306 (2003

with the B functions given in Eq(3.9). The coordinates of
the fixed points and the elements of the corresponding ma-
trices () depend on the remaining free parametetsy, d,
anda.!

Below we list all possible fixed points of syste(d.2),
giving their coordinates in the one-loop approximation, that
is, to first order ine and . We shall also present the in-
equalities that determine the regiofs the space of param-

d, and a) where those points are IR attractive. It
should also be kept in mind that admissible fixed points
should satisfy the relationg, =0, u, =0, which follow
from the physical meaning of these parameters$s(the am-
plitude of a pair correlation function andis the ratio of the
diffusivity and viscosity coefficienjs

First of all, the trivial fixed point

g,=u,=0, A, arbitrary (4.39
should be mentioned. The corresponding maftixs diago-
nal with the diagonal elementgigenvalues

)\1:0, )\2:_28, )\3:—77, (43b)
so that point(4.33 is IR attractive fore<0, #<0. Since for
g=u=0 all the threeB functions (3.9) vanish simulta-
neously, the value afd at this fixed point remains arbitrary.
This degeneracy is reflected in the vanishing\ef

Iefast.i_n the one-loop approximation. This fact esse'ntially We shall discuss the physical meaning of pgh83 later
simplified the two-loop calculation of the anomalous dimen-and now turn to nontrivial fixed points. Their analysis is

sions for the scalar case performed in RéR)].

IV. FIXED POINTS AND SCALING REGIMES

It is well known that possible scaling regimes of a renor-
malizable model are associated with IR attractive fixed

points of the corresponding RG equation; see, e.g., [B&f.

simplified by the observation that the one-loop funct@p
factorizes into a part that depends only drand a part that
depends only ow,u:

95

- - 2__ _ 2
rdL o AT DA 0O, (44

Ba=

Roughly speaking, in solving the RG equation all the renor-

malized coupling constanty (that is, all dimensionless pa-

see Eqgs(3.9) and(3.10. Thus all possible values od, are

rameters of the modelare replaced by the corresponding found from the equatior8 ;=0 regardless of the values of

invariant charges;(s), wheres=k/x in the momentum

representation os=1/ur in the coordinate representation.
The invariant charges are determined as the solutions of the

following Cauchy problem

Dggi(s)=Bi({gj(s)}),

Here gi(s) is the full set of the invariant charges ami
E@Mgi are the corresponding3 functions. In the IR
asymptotic range §—0) the invariant charges tend to IR
attractive fixed points of systefd.1). The coordinates;, of
the fixed points are found from the equatigBig{g;, })=0

gi(1)=g; forall i. (4.0

for all i. The type of a fixed point is determined by the matrix values ofg,u: it is satisfied for.A,

Q0 ={Q;=49p;/g;}: for an IR attractive fixed point the ma-

trix ) is positive definite, i.e., the real parts of all its eigen-

values are positive.
In our case, the coordinatgg ,u, ,.A, of the fixed points
are found from the equations

Bg(g* Ui A ) = Bu(Gy Uy A ) = Ba(gy Uy AL ) =0,
(4.2

the other couplings, provided is nonzero andy,u are not
infinite:
A, =—110. 4.5

Furthermore, the element8s 4/dg| =4, =3Bl du| 4= 4,

=0 of the matrix() vanish for these values of, regardless

of the values ofg,u. Thus the matrix) is block triangular
and one of its eigenvalues coincides with the diagonal ele-
ment Q) 4=dB4/JA. Its sign is completely determined by
the value ofA4, , so that we can check a necessary condition
QO >0 for a fixed point to be IR attractive regardless of the
—1 for all «, for A,

=1 if a<1, and forA, =« if a>1. This is easy to under-

IFormally, « can be treated as the fourth coupling constant. The
correspondingB function ,Baz'f)ua vanishes identically owing to
the fact thata is not renormalized. Therefore, the equatjgp=0
gives no additional constraint on the values of the coupling con-
stants at a fixed point.
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stand geometricallyQ) ,>0 for the leftmost and rightmost points in the one-loop approximation, the eigenvalNes ;

points and() 4,<0 for the point lying in between them. of the matrix() (A, always corresponds to the diagonal el-
Therefore, for anya the condition(Q ;>0 is simulta- ementdgs/dA), and the inequalities that determine the re-

neously satisfied by two fixed points4, =—1 and A, gions where the points are admissiblR attractive and sat-

=max1, a}. Factorization of functior(4.4) allows one to isfy g, >0, u,=0):

analyze the solution of Eq4.1) for the invariant charge 2ds

A(s) independent of the remaining equations for the other Q" o —g-1 U=0 A=l (4.6a
invariant charges:A(s) will be attracted by the leftmost
fixed point. A, =—1 if and only if the initial conditionA  with the eigenvalues

=A(1) lies to the left of the unstable fixed poin¥ 2e(1—a)

<min{l,a}, and by the rightmost poin, =max1,a} if Alzm,

and only if A>min{1,a}.
Besides the finite valueg.5), there is one more possibil- \,=2s¢,

ity that formally corresponds tol, =c. More accurately it

can be revealed by the change of variables1/A4, y \ _(d=1-a)e—7n(d—1)

=g.A472; thena, =0 andy, is finite. It describes the situa- 3 d—1 ’

tion when action(2.10 contains the only vertex’ V(. o

Since in this vertex the derivative can be moved onto eithepdmissible for

of the fields#’ andv [see Eq(2.2)], such a model is multi- a<l, (d—1-a)e>(d—1)7. (4.60

plicatively renormalizabléthe vertexd’ V(1) is not generated

by the renormalizationand Z,=1 identically. Thus the re- 2d(d+2)e

TS 2ad-D)

(4.6b

sult a, =0 is exact to all orders. However, one can easily Q : O«
check that the eigenvalue of the matfix equal to the di-

agonal elemenf) ,=9B,/da, is always negative, so that this

point cannot be IR attractive. We shall not discuss it in whaiwith the eigenvalues

follows.

To conclude the analysis of the equatig@y=0, it re- _ 2e(a+tl)
mains to note that the result, =1 in Eq. (4.5 is exact(a Y (d-1)(d—2a)’
consequence of the relatiah =Z, for A=1, see Sec. I)| No— 2
while the other two can have corrections of order » and 2= <8
higher. The only exception is the result, =0 for «=0, [—2+d—d?+a(3d—2)]e—(2a—d)(d—1) 7
which is also exact due to the relatidn=1 for «=0. A= 2a—d)(d—1) ,

Substituting valueg4.5) into the functionsgy, g, from (4.7b
Eg. (3.9 and solving the equation8y=pB,=0 gives the
values of the remaining coordinatgs andu, . For each admissible for
value of A, , there are two solutions. For the first of them,

u, =0. This result is exact to all orders of theexpansion >0, a<d/2,

since the functiorB, for u=0 vanishes identically, see Eg. 5

(3.9. Substituting the valuel, =0 to B, and solving the (d=2a)(d—1)p<[d°—d+2—a(3d-2)]e.
equationBy=0 givesg, . We shall denote such fixed points (4.79
by Q, as they correspond to the case of “quenched disorder,”

see the comments to E@Q.9). For the second variang, . 2d(d+2)e

andu, are both nonzero; we shall denote such fixed points Q™ 8. _d2—3+a(d+ 1(1+a—a?)’

by F (“finite” correlation time of the velocity field.

Thus we arrive at six nontrivial fixed poin@~,Q",Q%, u, =0, A, =a (4.83
F~,F* F% where the superscripts correspond to the values
of A, in Eqg. (4.5. Below we give the coordinates of these with the eigenvalues

(4.7a

|
B (a’—1)e
P+ a(d+1)(1+a—a?)—3’

Ay

)\2:28,

[-3-a+ d’+ @?(1+d)(1—a)]e—[-3+d?*+ a(1+d)(1+a—a?) ]y

A
3 A2+ a(1+d)(1+a—a?)—3

, (4.8b
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d—a—-1
e>0, 7>0, a<l, e>y> a—1 &
e>0, a>1, d?*-3+a(d+1)(1+a—a?>0,
(2+6a—2d)e?+5(d—1—a)enp—3(d—1)%*>0.
- 3—a+a?(d+1)(1—a) (4.99
n< 2 S € (4.8@
d“°=3+a(d+1)(1+a—af) ~2d(2+d)(ad—2)(—2¢)?
o (A-a+rd)(d-2)2%(e—n)
E+e B 2ad(7—2¢)?
' g*_(a+d—1)2(s—n)’ [2+a(2-3d)—d+d?]e+(2a—d)(d—1)7
e (a—d—1)(d=2)(e—7) '
(I+a—-d)et+(d—1)7p B
T dra-D(e—p T (49 A=-1 (4.108
with the eigenvalues with the eigenvalues
2(1- a)(e— 7) _2+a)e—n)
T ad+2) ! —24+ad
_ 2_
Wy — VWA= W, Nyo i VWim W,
ho=— ey 2(—2+ad)(2e—7)
a(2e—1n)
W, + VW5 —W,
2_ =
_W1+\/m (4.9b N 2(—2+ad)(2e—1n)’ (4.10n

As= 2a(2e—7)

where

where

W;=2[-6+d—d?+a(—2+5d)]e?+5[2+ a(2—3d)

W;=(2+6a—2d)e?+5(d—1—a)enp—3(d—1)%?,

W,=8a(2e—n)[(1+a—d)e+(d—1) 7]

X (282—3en+ 7?), (4.90

—d+d?Jlenp+3(2a—d)(—1+d) 77

W,=8(—2+ad)(2s— 7)%(e— ) X{[ —2+d—d?

+a(—=2+3d)]e—(2a—d)(—1+d)7n}, (4.100
admissible for admissible for
e>n, 20<a<(d+1l), 2e>7, W;>0,
[2+a(2—3d)+d(d—1)]e<(d—1)(d—2a) . (4.100
2ad(2+d)%(p—2¢)?
Fe 0s= )
[d2—3+ a?(1+d)(1—a)+a(2d+3)]%(e — 7)
A, =a,
U*:[3+a—d2—a2(1+d)(l—a)]8+[d2—3+a(1+d)(1+a—az)]n (4.11a
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with the eigenvalues

\ _(a®=1)(e—n)
™ a(2+d)

W, — VWi—W,

" 2a(2+d)(26— 1)’

W+ VW2 — W,

N (21 d) (26— 1)

A, (4.110

where
W;=2[3—d?— a?(1+d)+a3(1+d)+ a(5+2d)]e?
—5[3+a—d?’—a?(1+d)+a3(1+d)]en
+3[3—d2— a(1+d)(1+a—a?)]7?
W,=8a(2+d)(2e— 7)*(s — )
X[(8+a—d?—a?(1+d)
X(1—a)]e+[—3+d?+ a(1+d)(1+a—a?) 7],

(4.119
admissible for
a>1, e>7n, 2e>7, W;>0,
[d2—3+a?(1+d)(1—a)+a(2d+3)]>0,
[3+a—d?—a?(1+d)(1—a)]e
+[d?-3+a(1+d)(1+a—a?)]9>0. (4.110

PHYSICAL REVIEW E 68, 046306 (2003

There is a trivial fixed point

X, =w, =0, A, arbitrary (4.133
with the eigenvalues
)\1:0, )\2:7], )\3: 7]_28, (4130

and a nontrivial fixed point, which we shall denote Ry} in
what follows,

RA: X,
B 2d(d+2)(2e—7n)
AL+ a)d+d?+a(3+d)— A%(— 1+ a+ad)—3’

w, =0, A, arbitrary (4.14a
with the eigenvalues
N=0, No=—2(e—17), AN3=2e—17, (4.14b
admissible for
n>e>1l2,

A(l+ a)d+d?+a(3+d)— A%(—1+ a+ ad)—3>0.
(4.149

The notationR* implies that this point corresponds to the
“rapid-change” regime and tha#, =.A remains a free pa-
rameter.

Triviality of points (4.33 and(4.133 implies the absence
of anomalous scaling; they correspond to diffusive-type re-
gimes, for which the convectiofthat is, the nonlinearity in
Eqg. (2.1)] can be treated within ordinary perturbation theory
and the standard methods of the homogenization theory ap-
ply. More detailed discussion of such fixed poifitsparticu-
lar, the difference between the “quenched” and rapid-change

However, the above list is not exhaustive: besides thérivial fixed pointg can be found in Ref41] for the example

fixed points with noninfinite values @, andu, , there are

of the passive scalar field, advected by the velocity ensemble

points for which these parameters tend to infinity. They car(2.5).

be revealed by the change of variabkesg/u, w=1/u. The
correspondings functions are obtained by the chain rule:

Bw=D,w=—(11u?)B,,
(4.12

B=D,x=(1lu) By— (9/u?) B,

with B4, from Eq. (3.9 and the anomalous dimensions

(3.10 expressed in the variablesw. Solving the equations

Bx=Bw=PB =0 gives three fixed points with finite values

of X, ,w,. , which simply express the poinE* * in the new
variables. Besides them, there are two fixed points with
=0, left out in the analysis performed in termsg@fu. It is

clear from Eq.(2.8) that the choicav=0 corresponds to the

rapid-change limit of our model. The dimensign from Eq.
(3.10 remains finite forw=0, while y; and y, vanish. In

On the contrary, the nontrivial fixed poin@=*, F*
and R4 describe nondiffusive asymptotic regimes, in which
the competition of the diffusive and convective terms in Eq.
(2.1) produces anomalous scaling behavior. The correspond-
ing anomalous exponents will be presented in the following
section, and now we shall discuss the interplay between the
possible scaling regimes. Seven nontrivial IR attractive fixed
points correspond to seven possible scaling regimes; only
one of them can be realized when the values of all param-
eterse, &, 7, d, and A are given, regardless of the values
of the amplitudesy and u (see below. In this sense, the
asymptotic behavior in our model is universal, aiag we
shall se¢ the anomalous exponents depend only on the
values of the exponents and » in the velocity correlation
function and on the parametets (for all regime$ and A

fact, they vanish to all orders of the perturbation theory in(for R%), but they do not depend on the coupling constants

xocg owing to the exact relatiod;=Z,=1 that holds in the

limit (2.8); see the discussion in Sec. lll. As a result, the

andu.
Indeed, let us fix the value ofl. Then the solution of

function 8, vanishes identically fow=0 and the coordinate the RG equatior{3.6) can be attracted by either of the fol-
A, remains arbitrary at such fixed points; see the remarkowing three sets: by the s¢F ~,Q,R*} if A<min{1, a},

below Eq.(4.33.

by the set{F",Q",R*} if a<1 and A>a, and by the set
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{F*,Q%R% if a>1 and.A>1.[In all these cases, the value e Y S B
of A, for the fixed pointR* in Eq. (4.143 simply equals to aq*_=01 T I,
A] 8- e d=2,0= 5l /I /'i/‘//'/ /'/' r
For any of these three situations, only one fixed point in 9.>0 d=3,a=1——§_f_:jl ////j:/‘//_/‘/ =0
the list {F,Q,R} can be IR attractive for givers and 7. 6. P ,f,’,\& |
Indeed, the analysis of the inequalities that determine the e stable A
admissibility regions for these points shows that these re- region :' if'/;fl,'.//"/x
gions adjoin each other without overlaps or gaps. The com- 41 ! ,.",,;7;1",\' d=3,a=05T
mon boundary of the admissibility regions for the poifits | i ot om05
andR is e= 7 [one of the admissibility conditions fd®* is 2 /A 2
<7, see Eq(4.149, while one of the admissibility condi- |
tions for any of the point&=* “ is e> 7, see Eqs(4.90), o0 . 7 L
(4.100, and(4.119d]. The common boundary of the admis-
sibility regions for the point& andQ is (d—1—a)e=(d 108 6 4 2 0 2 4 6 8 10
—1) 7 for the pairQ™, F* [see Eqs(4.60 and(4.9d], n
[d2=3+a(d+1)(1+a—a?) ]y Ot
d=4,0=1.5 d=3,0=1 /; /
=[d?-3-a+a?(d+1)(1—a)le \ Y
8 4 \\ d=4,0€=1 / ‘," /'/ /'/-
for the pairQ~, F~ [see Eqs(4.79 and (4.109] and[d? A=, | IR
—3+a?(1+d)(1— a)+ a(2d+3)]=0 for the pairF*, Q* sl U=0 fi7 77 L
[see Egs(4.80 and (4.11d]. e 9.0 “ l,/ / /’ /,//’/
Therefore, for any given set of parametetse, », d, and ol ! Iy /,/’_
A, the RG trajectory can be attracted by the only one pos- VoSN =2
sible nontrivial fixed point, regardless of the values of the stable 1 /772 ya
parameters,u [that is, the initial data for the Cauchy prob- 21 reglon Y Ad=3,0-0.78
lem (4.1)]. If the trajectory is attracted by a trivial point, the A
model will show diffusive-type behavior. Finally, if there is L
no IR attractive fixed point for the given set of parameters, N -

no definitive conclusion can be made about the asymptotic 108 6 4 2 0 2 4 6 8 10
behavior of the model within the framework of tkeexpan- n
sion. In particular, if the trajectory comes to a region where
the parameterg,u are negative, one can think that the steady O e 0
state of our system becomes unstafilg analogy with the d=4,0=1.8} [
RG theory of critical phenomena, where such behavior is A.=a, i 11 [ dea0nt
usually interpreted as a first-order phase transjtion 8 u.=0, N/
The admissibility regions in the-» plane are shown in g.>0 / ¢
Fig. 1 for a number of values of the parametarandd. In 6- '
the one-loop approximation, their boundaries are always e D
given by straight rays starting at the originy. Some of MERN
them, however, can be affected by the higher-order correc-
tions, so that the gaps or overlaps of different regions can .
appear in the two-loop approximatighig. 2). |
It is interesting to note that the scaling regimes that arise N
as solutions of the RG equations for the general model, in o4& ol ; L
several cases correspond to interesting physical situations e
(Fig. 3. In particular, the regimes governed by the points 10 8 6 -4 2 0 2 4 6 8 10
Q*'* correspond to the case of time-independentfrozen n
velocity field, while F** correspond to the rapid-change

limit of th? ge”er?" mOd.e‘lz'5)' . . FIG. 1. Regions of infrared stablity of the three fixed points

T(? a_v0|d possible misunderstandings we emphasize th"i‘El.Ga), (4.79, and(4.89 corresponding to quenched disorder for a
the limits up—0 or go—, Up—c are not supposed to be representative set of values of the space dimendiand the pa-
performed in the original Correlathn functid@.5); _th_e Pa-  rametera of the relative strength of the longitudinal part in the
rametersg, U, (and hencey,u) are fixed at some finite val- correlation function of the velocity field. The region of stability
ues. The behavior specific to modeé&8) and (2.9) arises  for any indicated values off and « lies between the dashed ray
asymptotically as a result of the solution of the RG equa<s=0, 7<0) and the correspondingly marked dash-dotted ray in the
tions, when the RG flow approaches the corresponding fixedpper half of thez-¢ plane. Note different scales on the coordinate
point. This shows that in the regimes governed by the pointaxes.
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10 : : Ty L[ R e
= = =c,0=U.9, ’
d=2,0=1 Aot . o] A=-1, A
gl A=l d=do=1 : u.>0,
u.>0, - 64 9.>0, e,/ L
] g.>0 d=3,0:05," 7. d=2, S
e det005" > e e f;at."e e
Pl e 5] gion |
. o )
Ed Rt -7 ’
S T 0+ s L
5 /»/::;;;:;' e staple I - /,,-
///2;,;’: - region 21 ,"‘/ r
«/'?’f"’ e
ol 4] 7 -
0 1 2 3 4 5 LT
10 -8 6 -4 -2 0 2 4 6 8 10
n
n
FIG. 2. Regions of infrared stability of the fixed poit#.99
with a finite correlation time in the asymptotic regime. Basins of 10 e e IS i T
attraction are shown for a representative set of values of the space o=8/7 0‘=1,/'stable //
dimensiond and the parameter of the relative contribution of the 3'\‘\?:9/7 /’ regio,ry F
longitudinal part in the correlation function of the velocity field. 5 . /oo
The region of stability for any indicated values dfand « lies i N P i
between the dashed rafg=7, 7=0) and the correspondingly 4] AN Fa |
marked dash-dotted ray in the upper half of the plane. Note € AN Fa
different scales on the coordinate axes. 24 N1/ L
A=-1,
N . X . o=3/2 N if
Q¢ the temporal fluctuations of the velocity field are as- 0 o u.>0, -
ymptotically irrelevant in determining the inertial-range be- 0 _,,,.»:;;;2?"' g.>0,
havior of the passive field, which is then completely deter- '2',-—-""'_,:;:55*' o=4 d=3,
mined by the equal-time velocity statistics. In the regimes _4_,_,-/134/'4(1-3 2/3<o<4 |
governed byR*, spatial and temporal fluctuations are both e
relevant, but the effective correlation time of the passive field -10-8 6 4 -2 0 2 4 6 8 10
becomes so large under renormalization that the correlation n
time of the velocity can be completely neglectdeg. 4).
The inertial-range behavior of the passive field is determined T
solely by thew=0 mode of the velocity field; this is the case Vsl a1/
of the rapid-change model. In particular, this means that the 8- 4 AR
coordinates of the fixed points and the anomalous exponents \\ /’ \\/’M
in such regimes must depend on the only expoiderite — 61 \ i i
or ¢ that survives in the limit in question, and coincide with 4l 4 /o, stable |
the corresponding dimensions obtained directly for models e ‘-\“ ///,' region
(2.8) or (2.9). This is indeed the case, as one can see from the 2 VoA L
explicit expressions given above and in the following sec- 0= iV A=-1,
tion. 0 i u>0, |
As regards the value of the amplitude factdrin Eq. 2] o3 P 9>0, |
(2.1), it can remain an arbitrary parametéor R*), or can /‘::-;:::;./ <5 d=4,
be attracted by one of the fixed points =+ 1, ora (for Q 41T 1/2<a<d |
or F); see Eq(4.5. Again, these possibilities correspond to S A  S
. L . . 10 -8 6 4 2 0 2 4 6 8 10
physical situations interesting as such. The cdge=1 cor-
responds to the behavior characteristic of the magnetic n

model, where the pressure vanishes due to reldfioh and

Eg. (2.1 becomes local. Therefore, the infrared behavior of 5 3 Regions of infrared stability of the fixed poift.10a

the nonlocal model can be described by the same fixed poiRyi, 4 finite correlation time in the asymptotic regime. Basins of
(or universality classas that of the locaimagneti¢ model;  tiraction of the three fixed points are shown for a representative set
the nonlocal pressure term does not affect the asymptotigs the longitudinal parameter in space dimensions two, three, and
properties of the passive field. The general model indeegbur. The region of stability for any indicated value eflies from
becomes a turbulence without pressure. The cdse —1  the dashed raye=7, 5=0) to the left up to the correspondingly
corresponds to the linearized NS equation with a given stamarked dash-dotted ray. Note different scales on the coordinate
tistics of the background fiel@ve recall, however, that this axes. Contrary to the quenched-disorder case, negative values of the
value of A, can be affected by the higher-order correctionscorrelation falloff parametet are (formally) allowed.
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L B — — in £ and 7). Finally, the cased, =0, a=0 corresponds the
6 =125, o=1 model, which(in its rapid-change variantwas introduced
% stable - independently in a number of studies as an example of a
6+ \ reg'or:/ e linear system with pressuf&7,53, a model with nontrivial
s o=15 Y s mixing of composite operator36,37 or a model which,
a8 N \\ /! i with a proper choice of the forcing, can reproduce the
€, \'\-\ N I anomalous exponents of the NS velocity figf].
AN A It is worth noting that fora# 0, the model with4,=0 is
0 ’:;;‘ﬁ/ u>0, L not renormalizable, as follows from the analysis given in
i 950, Sec. Ill. That is, the second nonlinear texf) will be gen-
21 - - d=2, erated by the renormalization procedure, even if it was ab-
ney -7 0=2.1547 1<0<2.1547| sent in the original equatio(®.1). Of course, this fact does
D not mean that the model witldyo=0 anda#0 is inconsis-
-10-8 6 4 2 0 2 4 6 8 10 tent; it rather means that its IR behavior is described by one
1 of the fixed point with.4, #0.
10 P - e V. CRITICAL SCALING: CRITICAL DIMENSIONS
o=1.254— jstable OF COMPOSITE OPERATORS
8+ o=15 j 7 regens 4
. 0=1.75 F o=t S/ Consider for definiteness some equal-time two-point
61 \\ I/ /’ coen o quantity F(r) that depends on a single distance parameter
4 o i/ S | for example, the pair correlation function of the primary
AN i fields 6,0’ or some composite operators. We assume that
E 2] \,\ i,;’,/// L F(r) is multiplicatively renormalizable, i.eF =Z¢FR with
N i Ao, certain renormalization constarfr. Then the function
01 'w__"___,::;;;; u>0, - FR(r) satisfies the RG equation of the forfiDgg
o e 9.>0, + ve] F(r)=0 with the operatorDgg from Eq. (3.7) and
e d=3, ye=D,InZg, cf. Eq. (3.8. The functionsF and FR are
4] .~ a=22773 1<0<2.2773 | equally suitable for studying the asymptotic behavior: the
_13 B 5 % 2 0 5 4 & &0 difference is in the normalization, choice of parameteere
or renormalizeyl and the form of the perturbation theaiin
n Jo or in g). The solution of the RG equation can be written
in terms of the invariant variables introduced in E4.1).
LA —— YIS The analysis shows that in the IR asymptotic region, defined
8. w25t/ ] by the inequalityAr>1 with A from Eq.(2.7) and any fixed
a=1—F+/ \/en mr with m=1/L from Egq. (2.3, the invariant charges ap-
64 I I proach one of the IR attractive fixed poiritee choice of the
I.f'/;f/ /. stable appropriate fixed point is discussed in the preceding section
4] o2 jy 7 regiont and, as a result, the functidf(r) takes on the self-similar
e 1~ s form
21 T i -
\.\\\\ il/;i}/ .A,,=0L, 4@ -
01 > us0, - F(r)=r,PAY(Ar) =2 g(mr), (5.9)
2 ey >0, . .
0=2.3819.~ d=4, wheredy anddg are the frequency and total canonical di-
4. _//” 1<a<2.3819 | mensions of, respectively(see Sec. Il and Table,land ¢
1 is some function whose explicit form is not determined by
‘108 6 4 20 2 4 6 810 the RG equation itself. The critical dimensiax: of the
1 quantity F is given by the expression

Ap=di+A,de+yE=de—yide+yE, (652

FIG. 4. Regions of infrared stability of the fixed poif#.113
with a finite correlation time in the asymptotic regime. Basins of « . .
attraction of the three fixed points are shown for a representative sgyhere YE denqtes_ the VaIL_Je of the anomal0u§ dimensien
of the longitudinal parameter in space dimensions two, three, and at the fixed point in question, anl,=2— ¥y with vy, from
four. The region of stability for any indicated value eflies from  Ed. (3.7) is the critical dimension of frequency.
the dashed raye(= 7, 7=0) to the left up to the correspondingly ~ Each nontrivial fixed poin@=«, F*:¢, andR" from Sec.
marked dash-dotted ray. Note different scales on the coordinat®/ corresponds to the scaling representation of the fcar)
axes. Negative values efappear here as well as for the fixed point with its own set of critical dimension& for all quantitiesF
(4.118. andA . In general, these dimensions are infinite series in
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and 5. For the rapid-change regim¢hat is, for the point sion below Eq.(4.12. For the fixed points=='* with u,

R*) they depend on the only exponeft 2 — 7 from (2.8), #0 the equatiorB,= 0 leads to the exact resujf; = ; see
while for the regimes with quenched disord#rat is, for the  Eq. (3.9). For the fixed poinQ“ with A, = a«=0, the exact
points Q%) they depend on the only exponentthat sur-  resulty* =& follows from the equatioBy=0 and vanishing
vives in limit (2.9). For the fixed poinR*, the equatiorn,  of y;; see the discussion in Sec. Ill. For the other regimes,
=0 determines the values of; ={ andA,=2—{ exactly, the first-order expressions foy’ are directly obtained by
that is, without corrections of ordef and higher. This fol-  substituting the coordinates of the fixed poitts6a, (4.7a,
lows from the explicit expression8.9 and (4.12) and the and(4.83 into the one-loop expressial.109 for y,. The
vanishing of the anomalous dimensiops,; see the discus- results can be summarized as follows:

[ (=2¢— 7 (exac) for RA
7 (exac) for F=«
(d—1—a)
= - 7 f +
-1 o Q
d’°~d—3da+2a+2
s( at2at2) for Q°
- (d—1)(d—2a) (5.3
d?—d+2
S(d(d——l)) for Q and a=0
. (d°~da®+da?—a®+a?—a—3) for Q°
(d°—da+da?+da—a®+ a’+ a—23)
\ & (exac) for Q% and a=0.

Then the dimension&g, e.g., of the primary fieldg,¢’ are  pendent ofZ, ,, from Eq. (3.1)] renormalization constants.

obtained from Eq(5.2) and the data from Table I, The analysis similar to that given in Refgi1,43 for the
scalar and iff33] for the magnetic model shows that, in the
Ag=—1+y5l2, Ap=d—y}/2, (5.4  case at hand, these constants can be calculated in the model

_ _ _ _ _ . without forcing[the bare propagatdm; ¢;), from Eq.(2.11)
and the dimensions of their correlation functions are giveldoes not enter into the Corresponding Feynman diagl[ams
by simple sums over the fields entering into the function. Then operator$5.5) appear multiplicatively renormalizable:

In the following, the crucial role will be played by the F[n,11=2z[n,I11FR[n,I].
critical dimensionsA[n,l] associated with the irreducible We have calculated all the constan&n,!] in the
tensor composite field€'local composite operators” in the  one-loop approximatioffirst order ing) in the MS scheme
f|e|d theoretiC tel’min0|0g)ybui|t SO|e|y Of the f|e|d30 at a for the Specia' Cas@:O and arbitraryﬁo«, which is sufficient
single space time point={t,x}. They have the form to find the corresponding anomalous dimensioy{s,|]
_ =D, InZ[n|[]; cf. the discussion above E¢3.4). We omit
FInII=6,00- - 6,00[600 60+ -0 (5.5 ‘calculation(which is very similar to that performed in
Refs.[41,43,33 for the scalar and magnetic casesd give

wherel<n is the number of the free vector indices amd only the final result:

=|+2p is the total number of the field8 entering into the
operator; the vector indices and the argumeot the symbol gd
F[n,l] are omitted. The dots stand for the appropriate sub- _ g 2
tractions involving the Kroneckef symbols, which ensure ZInl1=1+ 8¢ d(d+2)(u+1)[“4 QitaQe], (56
that the resulting expressions are traceless with respect to
contraction of any given pair of indices, for examptgg; where
— 5” Gkgk/d, Bi 0] Bk— (5” 0k+ 5”(0]' + 5“(0,) 02/(d+2) and
so on. We also note that the numbarand| are even or odd Q,=n(d+n)(d—1)—I(1+d—2)(d+1)
simultaneously. '

Owing to the coincidence of the arguments, additional UV
divergences arise in the correlation functions involving such Qz=n(dn+n—d)(d=1)—I(1+d-2). (5.7
operators. They are eliminated by means of the additional
renormalization procedure, which gives rise to ngmde-  For the anomalous dimension we thus obtain
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=

7[n,|]=m[A2Q1+ aQ,].

(5.9

According to Eq.(5.2), the critical dimensions of operators
(5.5 are given by

A[n,l]=nAy+y*[nl], (5.9
with A, from Eq. (5.4 and y*[n,l] is the value of the

PHYSICAL REVIEW E 68, 046306 (2003

anomalous dimensiof5.8) at one of the nontrivial fixed
points (4.69,(4.79,(4.89,(4.99,(4.109,(4.113,(4.144.
Note that owing to the renormalization, the critical dimen-
sions of operatorg5.5 differ from the naive sum of the
dimensions of the field® that constitute the operator. The
exception is provided by the caskg, = «=0, whenA[n,l]
=nA, exactly(the proof is similar to that given, e.g., in Ref.
[18] for the scalar case

The results for the anomalous dimensiarf§ n,l] can be
summarized as follows:

! for F*
(d+2)(d—1+a)
! for F~
(d=2)(d+1-«a)
Y11= = (2e = n)[A; Qi+ aQ,)/2x 1 (5.10
for F¢
(d>—da’+da’+2da—a®+ e+ 3a—23)
1
7 for F* and a=0
(d°=3)
for the regimes with finite correlation time,
1
- - f +
(d+2)(d—1) orQ
—1 for Q~
(d—1)(d—2a«)
y*[n,1]= e[ A Q;+ aQ,]/2x 1 (5.11)
for Q¢
(d°—dal+da?+da—a’+a’+a—3)
1
e for Q* and a=0
(d°=3)
for the regimes with quenched disorder, and
1
for R4,

(d°+ A%—aA’—adA?+adA+dA+da+3a—23)

y*[n1]=—(2e— n)[A?Q;+ aQ,]/2X L

for R and a=0

(d’+ A%+dA-3)

for the regimes with zero correlation time. We recall thigt
takes on the values 11, anda for the fixed pointd= and
Q labeled by the superscripts, —, and «, respectively,
while for the rapid-change regimd, =.4 remains an arbi-
trary parameter. We also note that dimensith41) depend
on the only exponent that survives in limit(2.9), while
dimensions(5.12 depend on the only exponedt2s—7
that survives in limit(2.8). Exponents(5.10 also depend

only on ¢, which seems to be an artifact of the first-order

approximation. We also note that exponeffisl2) were de-

(5.12

rived earlier directly for the rapid-change mod@.8) for

some special casesgt=1 and =0 in Ref.[33], A=1 and
arbitrary =0 in Ref.[34] and arbitraryA and =0 in Ref.
[35].

From Egs.(5.3), (5.4), and(5.9—(5.12) it follows that

A[n,I]=—n+0(e). (5.13

Thus for all nontrivial fixed points, at least for small values
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of e~n, one hasA[n,l]<A[Kk,j] if n>k regardless of the
relation between andj. For a fixed value ofi one has

A[n,I1>A[nj] and «v[n,(]>9[nj] if I>],

(5.19

as one can easily see from the original expres$to8) for
the anomalous dimensiof{ n,l], properties of polynomials
(5.7 and the fact that the combinatiog/(u+1)=x/(w
+1) that enters into Eq(5.8) is positive definite for all
nontrivial fixed points[We recall that the parameters w
were introduced above E.12 for the proper description
of the rapid-change regiméd.hus for fixedn, the dimension
A[n,l] decreases monotonically withand reaches its mini-
mum for the minimal possible value dfthat is,| =0 if nis
even and =1 if nis odd.

The hierarchy relationg5.13 and (5.14) will be impor-

PHYSICAL REVIEW E 68, 046306 (2003

VI. OPERATOR PRODUCT EXPANSION
AND THE ANOMALOUS SCALING

Representatiori5.1) for any scaling functionré(mr) de-
scribes the behavior of the correlation functiéifr) for
Ar>1 and any fixed value afr. The inertial range corre-
sponds to the additional condition thatr<1. The form of
the functiongé(mr) is not determined by the RG equations
themselves; in the theory of critical phenomena, its behavior
for mr—0 is studied using the well-known Wilson operator-
product expansiofOPE); see, e.g., Ref.7]. This technique
is also applicable in the theory of turbulence; see, e.g., Refs.
[23-25.

According to the OPE, the equal-time product
F1(X)F,(x") of two renormalized composite operatorsxat
=(x+x')/2=const andr=x—x’'—0 can be represented in
the form

F1<x>F2<x'>=§ Ce(nF(t,x), (6.)

tant in the discussion of the inertial-range behavior of vari-
ous correlation functions, in particular, in the issue of thewhere the function€r are the Wilson coefficients regular in
large-scale anisotropy persistence; see Sec. VI. Similar irm? and F are, in general, all possible renormalized local
equalities were established earlier for the case of the passivmmposite operators allowed by symmetry; more precisely,
scalar field, advected by the velocity ensemki®e5) and  the operators entering into the OPE are those which appear
(2.6) in Refs.[41,43, and for the magnetic field advected by in the corresponding Taylor expansions, and also all possible
the Kraichnan ensembl@.8) in Ref.[39,33. operators that admix to them in renormalization. If these op-
It also follows from Eq.(5.13) that the critical dimensions erators have additional vector indices, they are contracted
A[n,] are negativeand that the spectrum of their dimen- With the corresponding indices of the coefficieas.
sions is not bounded from below; these properties, typical of Without loss of generality it can be assumed that the ex-
the models of turbulence, will also be important in the fol- Pansion in Eq.(6.1) is made in the operators with definite
lowing. critical dimensionsAr. The renormalized correlation func-

If the random forcef is introduced in Eq(2.1), none of 0N (F1(x)F2(x’)) is obtained by averaging E¢6.1) with
formulas (5.6)—(5.12 change, because the bare correlator"® Weight exz with Sg from Eq.(3.1), the quantitieg F)
(06), from Eq. (2.1D, which becomes nonzero, does not appear on the right-hand side. The_lr asymptot|c_behaV|or for
enter the relevant diagrams. However, operatbr§) are no m—20 is found ferFm the corresponding RG equations and has
longer renormalized multiplicatively: the operatéfk,j] theFform<ﬂlj)ocm .t duct 611 theref
can admix in renormalization to the operafejn,l] if and rom the operator-product expansiéiil) we therefore

i ) . o find the following expression for the scaling functigtmr)
only_ if, k<l. In general,lja-él, but if cprrelator(2.3) IS 'S,O' in the representation(5.1) for the correlation function
tropic, only operators with=I can mix in renormalization.

: : C . (F1(x)F2(x")):
The admixture of operators witk>1 is impossible due to
the absence of appropriate diagrams; this is a consequence of
the linearity of the original equatiof2.1) in 6 andf. The
admixture of operators wittk=n and j#1| is also impos-
sible, because the corresponding diagrams do not involve thghere the coefficientd(mr) are regular in (r)2.
correlator(#6), and therefore do not “feel” the violation of  The guantities of interest are, in particular, the equal-time
the rotational symmetry caused by functi¢h3). pair correlation functions of the composite operat(5s).

As a result of the mixing, the operatbin,|] becomes a For these, representatidb.1) is valid with the dimensions
finite sum of contributions with definite critical dimensions de=—(n+k)/2, de (n+k) and Ar=A[n,11+A[k,j]
A[n,I] and A[k,j] with k<n and, in general, all possible \ith A[n,1] from Eq.(5.9):
values ofj allowed for a giverk. However, due to relation
(5.13, the leading term is still given by the original contri-
bution with the dimensio\[n,l], while the new contribu-

§<mr>=; Ap(mr)AF, (6.2

(FIn, () F[K,j1(tX7))

tions with k<<n give only corrections that vanish in the IR
rangeAr>1 in expressions such &S.1). In what follows,

:(KO)_(n+k)/2A_(n+k)(AI’)_A[n'I]_A[k’j]g(ml'),
(6.3

we shall be interested only in the leading terms of and thus

we can ignore the mixing and treat the operdipn,|] as if
it has the definite critical dimensiafa[ n,|].

whereAr>1 andé(mr) is the corresponding scaling func-
tion.
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As already said above, the operators entering into thé) and thus increase the total canonical dimension of the op-
OPE are those which appear in the corresponding Tayloerator in comparison with the corresponding operator built
expansions, and also all possible operators that admix tsolely of the fieldsd. Furthermore, from the hierarchy rela-
them in renormalization. The leading term of the Taylor ex-tion (5.14) it follows that, for the fixed number of the fields
pansion for function(6.3) is given by thenth rank tensor @, the minimum of the dimension is achieved for the mini-
F[n+k,I+]j] from Eq. (5.5). Its decomposition in irreduc- mal number of vector indices, that is, for the scalar operator
ible tensors gives rise to the operatéipn+k,p] with all F[n+k,Q] if the sumn+k is even and the vector operator
possible values gb<I+ j; the admixture of junior operators F[n+k,1] if the sumn+k is odd.

(see the end of Sec.)Vgives rise to all the monomials We therefore conclude that the leading term of the small-

F[s,p] with s<n+k and all possible allowed for a given mr behavior of the scaling functio(6.4) has the formé&

s. Hence, the asymptotic expression for the structure function- (mr)2["*k!n+d  Substituting this expression into E§.3)

&(mr) for mr<1 has the form gives the desired leading term of the correlation function of
two operatorg5.5) in the inertial range Ar>1, mr<1):

n+k s
s=0 p=pg |
p=p N(KO)_(n+k)/2A_(n+k)(Ar)_A[”J]—A[kvll
with the dimensions\[k,p] from Eq.(5.9). Here and below X (mr)An+kind, 65

ps denotes the minimal possible value pfor givens, i.e.,

ps=0 for k even andps=1 for k odd; Ag, are some numeri-  with the dimensions\[n,|] from Eq. (5.9).
cal coefficients dependent on the parameters such, ak
and so on. The dots in E46.4) stand for the contributions
which arise from the composite operators that, in addition to
the field 6, involve the other field®’, v and/or derivatives
d,0;.

The leading term of expressidp.4) for mr<1 is deter- Without loss of generality, it can always be assumed that
mined, obviously, by the minimal possible dimensiap  expansion(6.1) is made in irreducible traceless tensor com-
that appear on its right-hand side, provided this minimal di-posite operators. Then averaging E6.1) with the weight
mension exists. In our model, there are infinitely many op-expS; automatically produces the decomposition of the cor-
erators with negative critical dimensions, and the spectrunmnelation function in irreducible representations of the rotation
of their dimensions is not bounded from beldW.is possible  group SO(), similar to that employed, e.g., in Ref&7—-
to show on general grounds that if a model involves one52] for description of the NS turbulence. This becomes es-
negative dimension it necessarily involves infinitely manypecially clear if the left-hand side of E¢6.1) involves only
negative dimensions with unbounded spectjuiinall these  scalar quantities and the anisotropy, introduced by correlator
operators appeared on the right-hand side of representatid@.3), is uniaxial, that is, specified by a single-constant unit
(6.4), we would have to sum up their contributions in ordervector n. Then the mean valu¢F) of a Ith rank tensor
to find the asymptotic behavior atr—0. This problem is operatorF on the right-hand side of E¢6.1) is an irreduc-
indeed encountered for the stochastic NS equd@@h and ible tracelesdth rank tensor built only of the vectaor and
is discussed in Ref$25,24] in detail. the Kronecker delta symbols. Its vector indices are con-

In our model, however, there is no such problem, at leastracted with the indices of the corresponding Wilson coeffi-
for smalle. The contributions of the operatoF§ s,p] with cient Ce(r), which gives rise to the Legendi@r Gegen-
s>n+k (which would be more importantio not appear in  bauer for arbitraryd) polynomial of orderl. In general,
Eq. (6.4), because they are absent in the Taylor expansion alecomposition ihypepspherical harmonicésee, e.g., Ref.
correlator(6.3) and do not admix in renormalization to the [64] and references thergior its analogs for tensor quanti-
terms of the Taylor expansion; see Sec. V. As already notetles (see, e.g., Ref.65] and the references thergiwill be
there, this is a manifestation of the linearity of the original encountered.
equation(2.1) in # andf. What is more, one can show that  The rankl of the operator can be viewed as the measure
for any operatorF that appear in the OPEand not only of anisotropy of the corresponding contribution in expansion
operatorg5.5) built solely of the fieldsd] the number of the (6.4). If the forcing is isotropic, that is, the functid®(r) in
fields # cannot exceed the total number of the fiefdsn the  correlator(2.3) depends only on=|r|, only scalar operators
left-hand side; therefore their dimensions cannot appear iwith =0 have nonvanishing mean values, and only their
Eq. (6.4). It then follows that the leading term in E@.4) is  dimensions appear on the right-hand side of Eg4). In
determined by an operator built solely of the fieldsand  general, tensor operators witk=0 also contribute to Eq,
containing the maximal possible number of the fields, that is(6.4). Owing to relations(5.14), the leading term of the
n+Kk. The operators containing less thart k fields 6 give  asymptotic behavior amr—0 is still given by the scalar
only corrections, as follows from the hierarchy relation operator withl =0 (it has the minimal dimension among the
(5.13. The operators involving the fieldg', v and/or de- operators with a fixed number of the field®Ve thus con-
rivatives also give only corrections, because the canonicatlude that the leading term is given by the same expression
dimensions of these additional factors are positsee Table (6.5 for both the isotropic and anisotropic forcing, while

VII. ANOMALOUS SCALING IN ANISOTROPIC
SECTORS: HIERARCHY OF ANISOTROPIC
CONTRIBUTIONS
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anisotropic contributions witH>0 give only subleading This means, in particular, that the anisotropic corrections in
terms(correctiong. What is more, relationé.14) show that  Eq. (6.4) become closer to each other and to the leading term
these contributions reveal a kind bferarchyrelated to the asa grows. Thus the compressibility enhances the penetra-
degree of anisotropy: the higher is the rank of the operatotjon of the large-scale anisotropy into the inertial range. This
the less important is its contribution to the inertial-range bepenetration is even more manifest for the odd-order ratios of
havior. the correlation functions: the skewness factor growsnfar

For the first time, the hierarchy relations for anisotropic g, provideda is large enough, while the growth of the
contributions were derived in Ref39] for the magnetic hyperskewness factor and other higher-order ratios becomes
field, passively advected by Kraichnan's velocity ensemblenych faster than for the incompressible case; see the discus-
(2.8), and in Ref.[41] for the scalar field, advected by the sjon in Refs[31,43,34,66
Gaussian velocity field specified by correlat@r6) (in both No such definite conclusions can be drawn for the general
cases with general anda=0). In the first of these papers, vector model. The straightforward analysis of the explicit
anomalous exponents were found exactly for the pair Correexpressions (5.10—(5.12 shows that the derivative
lation function, while in the second the exponents were deﬁzA[n,p]/apaa is negative and, therefore, the behavior de-

rived only in the one-loop approximation, but for all the scribed above takes place only in two regimes described by
higher-order correlation functions. Later these results wergne fixed pointsF* (alwayg andR* (only if the relation

reproduced in Ref[40Q] for the magnetic fieldonly for d
=3, but also including helical contributionand in Ref[52]

for the scalar field advected by Kraichnan’s ensemble. Gen- —3+ Ad+d?— A3d(d+1)+A%d+1)2
eralization to the higher-order correlation functions of the
magnetic field was given in Ref33] (for «=0), while gen- —A%(d?*+4d+2)>0, (7.3

eralizations to the case of generalwere obtained in Ref.
[34] (magnetic field and Kraichnan's ensembénd in Ref.
[43] [scalar field and ensembl@.6)]. Generalization to the which is independent o, is satisfiefl For all the other
general vector mode(2.1) and Kraichnan's ensemble was cases, one find?A[n,p]/dpda>0 and the behavior is op-
given in Ref.[35]. posite: compressibility suppresses the penetration of the
So far, analytical results of such kind have been obtainedarge-scale anisotropy into the inertial range, anisotropic con-
only for passive fields, advected by the synthetic Gaussiatributions become farther from one another and from the iso-
velocity ensembles. However, numerical simulations and redropic term.
experiments show that the picture outlined above appears It is tempting to attribute this “inverse behavior” to the
rather general, being observed by the passive scalar fielcombined influence of the compressibility and pressure. In-
advected by the two-dimensional NS field in the inverse endeed, the “normal’(scalar-likg behavior takes place for the
ergy cascadgs3] and by the NS velocity field itse[69—-62. magnetic regimeF ", for which A, = 4,=1 and the pres-
These observations justify and make more precise old phesure term(2.4) vanishes. For the rapid-change regifé
nomenological ideas about the isotropization of the inertial-and reasonable values df relation(7.3) is satisfied only in
range turbulence in the presence of a large-scale anisotrope restricted area around the poidf, =1 (including A,
Nevertheless, the anisotropy survives in the inertial range=1, in agreement with the analysis of RE34]), where the
and reveals itself irodd correlation functions, in disagree- pressure effects are relatively small. However, the magnetic
ment with what was expected on the basis of the cascadegime in a frozen velocity field@* demonstrates the in-
ideas. We shall return to this important issue in the Concluverse behavior.
sion, and now let us briefly discuss the influence of com- The dependence on the parametgrwhich controls the
pressibility on the hierarchy of the anomalous exponents. pressure effects, is essentially different from the dependence
Effects of the compressibility on the anomalous scaling inon o: for the regimes with nonzerginite or infinite) corre-
anisotropic sectors were studied earlier for the sc8dl lation time, the value of the corresponding invariant variable
and magneti¢34] fields advected by Kraichnan’s ensemble can take only three discrete valudsg = —1,1,«. The value
(2.8) and for the scalar advected by the velocity ensemblef 4, which is realized for a given regime dependsmbut
(2.6) with finite correlation timg43]; see also Ref66] fora  not on.4; see Eq(4.5. The cased, =1 corresponds to the
summary. In all those cases the conclusion was the same: thgagnetic (pressurelegsequations; then the general model
hierarchy expressed by relati@s.14), which can be rewrit- indeed becomes a turbulence without pressure, despite the
ten as presence of the nonlocal pressure term in the original sto-
chastic equation. For the zero-correlated regiR@ the
dA[n,p]/op>0 (7.1  anomalous exponents retain a continuous dependengk on
for the incompressible casex&0) it was discussed in Ref.
[35]. The value ofA=1, where the pressure effects disap-

remains valid for all values of the compressibility parameterpear, is not distinguished at all; the derivative

O=a<+x, but it always becomes less pronouncedaas #A[n,p]/dpdA at A=1 is positive for almost all param-
grows, eters(namely, ford> —1.3a+ 1.5, the approximate relation
obtained numerically but is negative definite, e.g., fod
9?A[n,p]/dpda<0. (7.2 =0.
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VIIl. CONCLUSION regimes can be realized, irrespective of the values of the

. . i amplitudes A,,go,Ug. Three regimes correspond to finite
We have studied a model of a divergence-ifansversg correlation time of the advecting velocity field, and three

vector quantity passively advected by a random Gaussian__. o : . .
o A S regimes correspond to infinite correlation tinfer time-
velocity field with finite(and not smajlcorrelation time. The . . .
4 . . e . . .independent velocijy Each of these two sets involve the
model is described by an advection-diffusion equation with a

o magnetic(pressurelessase, linearized NS equation, and the
random large-scale stirring force, nonlocal pressure term

o : . model with «-dependent effective amplitude in front of the
and the most general form of the inertial nonlinearity. The tretching term: forw=0 the latter gi th ial model
correlation function of the advecting field mimics some St etening term, for= € latier gives e special mode

. L ) with no stretching term, whose rapid-change version was
properties of the real inertial-range turbulence: the energ%tudied e.q.. in Ref§37,53.54. The scaling exponents for
spectrum has the forr(k)o=k'~2¢, while the correlation » €., AN g exp

. 244 . these regimes depend on the exponenisand the ampli-
time scales ak - An advantage of the model is the tude a, but they are independent of the values of the ampli-

ossibility to control the pressure contribution and thus stud . )
P y P éudes/lo,go,uo. The remaining seventh regime corresponds

its effects on the inertial-range behavior. Another reason t o the rapid-change velociiizero correlation tim the cor
study the general case is the possibility to describe in a uni- P 9
sponding exponents depend also.4n

. . . . e
form way several special cases interesting on their own: th& ; . . .
kinematic magnetic model, linearized NS equation, and the To avoid possible confusion we stress that the behavior

special model without the stretching term, which possesse%?ec!f'c. tp the afore'men'tloned plasses, €9 magnetic model
additional symmetry and has a close formal resemblanc ith infinite correlation tlme, arises aufcom_atlcally When the
with the nonlinear NS case. G flgw apprqaches the fixed point which is IR e_lttr_acnve for
We have shown that the system exhibits various types of'® given choice of parametessy,a; the frozen limit(2.9)
inertial-range asymptotic behavior, characterized by nonor the substitutiond,=1 are not performed in the original
trivial anomalous exponents; the latter are analytically calcumodel and the parameter,,go,Uo are fixed at such finite
lated to first order ire ~ 7, including the anisotropic sectors. values. In particular, this means that the anomalous expo-
The key points of our analysis are the existence of a fieldents in those regimes are independent of the correlation
theoretic formulation of the original stochastic problégec.  time (more precisely, the ratio of the correlation time of the
I1), multiplicative renormalizability of the corresponding velocity field and the turnover time for the scalar field, mea-
field theory (Sec. Ill), existence of nontrivial IR attractive sured by the parametery; see the discussion in Rg#1]).
fixed points of the corresponding RG equations in the physiin this sense, one can speak about the universality of the
cal region of the paramete(Sec. 1V), and the possibility to  anomalous exponents in our model.
identify the anomalous exponents with the critical dimen- Independence of the forcing: Zero-mode pictuls. we
sions of certain composite operat@ecs. V and V. This  have seen, the critical dimensions of all composite operators
allows one to construct a systematic perturbation expansio(s.9), and therefore the corresponding anomalous exponents
for the exponents; the practical calculations have been petincluding anisotropic sectorsare independent of the forc-
formed to the first nontrivial order im~ 7 (one-loop ap- ing, specified by correlato2.3). In particular, this means
proximation). that they remain unchanged, when the stirring force in Eq.
Existence of explicit one-loop expression allows one t0(2.1) is replaced by the imposed mean constant field, such as
discuss the stability scaling regimes and the universality ofn Refs.[33,39. The role of the forcing is to maintain the
the corresponding exponents, that is, tiigijdependence on steady state of the system and thus to provide nonaero
the pressure, anisotropy, compressibility, forcing, and so orplitudesfor the power-like terms with those universal expo-
or, more technically, on the exponentsy and the ampli- nents.
tudesAg, gg, Ug, ande in the stochastic equatidi2.1) and This behavior is already well known for the passive scalar
correlator(2.6) of the advecting velocity. Although the be- fields[41,43 advected by velocity2.6) or vector fields, ad-
havior of the vector model is much richer than that of itsvected by the zero-correlated velocj§3,39.
scalar counterpart, the general picture appears essentially the In the language of the R@Gvhich is equally applicable to
same: the exponents are universal in the sense that they die case of a zero or finite correlation tijrthis is explained
pend on the exponents and 7, but do not depend on the as follows: the stirring force or the mean field do not enter
amplitudes in Eq(2.6) and forcing(2.3); the exponents re- into the diagrams that determine the renormalization of op-
lated to anisotropic contributions show a hierarchy related t@rators(5.9), so that their dimensions are independent of the
the degree of anisotropymore anisotropic contributions are forcing. Similar diagrams determine the contributions of
less important this hierarchy holds for all scaling regimes, those operators into the operator-product expansiér,
regardless of the values of the compressibility parameter which are nontrivial even for the unforced model. The dif-
from Eq. (2.5 and the pressure parametérfrom Eq.(2.1).  ference is that for the unforced model, mean values of the
Consider these points in more detail. operators vanish, and they give no contribution to the right-
Scaling regimes and universality classesnfrared hand sides of representations such as(Bdl). For the iso-
asymptotic behavior of our model is completely described bytropic correlator(2.3), scalar operators acquire nonzero mean
seven different scaling regimes, or universality classes, eackalues and contribute to the right-hand side of E§4),
corresponding to a set of anomalous exponents. For thehile for the anisotropic correlator or the imposed mean
given set of the parametets 7, and«, only one of these field, the mean values of irreducible tensor operators also
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become nonzero and their contributions are “activated” inlence in the inertial range The analytical results discussed
representation§s.4). above confirm this classical concept and give a more quan-
For the case of zero correlation time, when the equal-timéitative picture of the isotropization. The relevance of these
correlations functions satisfy exact closed differential equaresults for more realistic situatior{scalar advected by the
tions, the above picture it is easily understood in the lantwo-dimensional NS field or the turbulent velocity it9ei$
guage of the zero-mode approddH]: forcing terms do not  briefly discussed below.
affect the corresponding differential operators; thus the Effects of compressibilitythe anomalous exponents ex-
anomalous exponents, determined by the zero m¢stdg-  plicitly depend on the parameter=0 that measures the
tions of homogeneous unforced equatjoalso are indepen- compressibility of the fluid. For the regimes determined by
dent of the forcing. On the contrary, tlenplitudesare de- the fixed pointsF* (magnetic model with finite correlation
termined by the matching of the inertial-range zero-moddime) andR4 (zero correlation time, with additional inequali-
solution with the forced large-scale solutions, which is onlyties for the parameterl satisfied by the magnetic casé
possible in the presence of the forcing terms. =1 and its vicinity, the hierarchy of anisotropic contribu-
The exact resemblance in the behavior of the rapidtions becomes less pronounced@agrows: the anisotropic
change models and the finite-correlated cases suggests tltatrrections in Eq(6.4) become closer to each other and to
for the latter, the concept of zero mod@sd thus of statis- the leading term as grows. Thus the compressibility en-
tical conservation lawsis also applicable, although the cor- hances the penetration of the large-scale anisotropy into the
responding equations are not differential and involve infiniteinertial range. The situation is opposite for all the other re-
diagrammatic series. gimes, which arguably can be attributed to the influence of
Hierarchy of anisotropic contributiondn the presence of the pressure term.
the large-scale anisotrogyhat is, the anisotropy introduced Effects of pressurelhe dependence on the parameter
at scales of ordek by the forcing, correlation functions of which controls the pressure effects, is essentially different
the model can be decomposed in irreducible representatiorisom the dependence oa: for the regimes with nonzero
of the d-dimensional rotation group S@). Such a decom- correlation time, the value of the corresponding invariant
position naturally arises from the corresponding OPE, provariable can take only discrete valugg =—1, 1, «. The
vided it is made in irreducible traceless tensor compositdehavior for the fixed poini, =1, which corresponds to
operators; the rankof a tensor operator can be used to labelthe magnetic caséurbulence without pressureshows no
the terms of the S@{) expansion and can be viewed as theserious difference from the regimes with pressure. For the
measure of anisotropy of the corresponding tétsector”).  rapid-change limit, the exponents continuously dependlpn
Thus each anisotropic sector is characterized by its own seind the value 0fA= 1, where the pressure effects vanish, is
of scaling exponents, the leading term is given by ltile  not distinguished either.
rank composite operator with minimal critical dimension. Relevance for the NS turbulenc&he picture outlined
Explicit expressions for these dimensions were obtaine@bove for passively advected fiel@ssuperposition of power
to the first order ire and#. They reveal an hierarchy related laws with universal exponents and nonuniversal amplitudes
to the degree of anisotropy: the higher is the rank of theseems rather general, being compatible with that established
operator(the more anisotropic is the contributipthe larger  recently in the field of NS turbulence, on the basis of numeri-
is the corresponding dimension, and thus the less importamal simulations of channel flows and experiments in the at-
is its contribution to the inertial-range behavior. mospheric surface layer; see Ref57—62, and references
This hierarchy, expressed by relatios.14 or (7.1), therein. It was shown that the leading terms of the inertial-
holds for all nontrivial scaling regimes of our model, all range behavior are the same for isotropic and anisotropic
values of the parameters, A, d, and so on. It is similar to forcing [57,5§. In the paper$59—62, the velocity correla-
the hierarchy relations derived earlier for the passive scalaion functions were decomposed in the irreducible represen-
[41,43,52 and magnetic field$33,39,4Q advected by the tations of the rotation group. It was argued that in each sector
Gaussian velocity ensembles. of the decomposition, scaling behavior can be found with
In particular, this means that the overall leading term isapparently universal exponents. The amplitudes of the vari-
given by the exponent from the isotropic sector, and it isous contributions are nonuniversal, through the dependence
therefore the same for the isotropic and anisotropic forcingon the position in the flow, the local degree of anisotropy and
It also should be stressed that the independence of the scathomogeneity, and so on.
ing behavior in different sectors is a direct consequence of This is rather surprising because the equations for the cor-
the linearity of our model, independence of the exponents orelation functions in such cases are neither closed nor isotro-
the random force, and the S@)(symmetry of the unforced pic and homogeneous. Although the hierarchy similar to Eq.
model. On the contrary, thieierarchy of the exponents fol- (5.14) is demonstrated by the critical dimensions of certain
lows from the explicit expressions, obtained only by practi-tensor operators in the stirred NS turbulence, see Sec. 2.3 of
cal calculation. Ref.[25], the relationship between them and the anomalous
According to the Kolmogorov-Obukhov theof{,2], the  exponents is not obvious there. It is worth recalling here that
anisotropy introduced at large scales by the fordipgund-  the so-called “additive fusion rules,” hypothesized for the
ary conditions, geometry of an obstacle, etties out when NS turbulence in a number of papers, R¢f6,17,26, and
the energy is transferred down to smaller scales owing to theharacteristic of the models with multifractal behavisee
cascade mechanisfisotropization of the developed turbu- Ref. [27]), arise naturally in the context of the models of
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passive advection owing to theinearity. The existing re- tributions in the representations such as in Eg4). This
sults for the Burgers turbulence can also be interpreted natyproblem is discussed in detail in Ré¢#1] for the passive
rally as a consequence of similar fusion rules, where onlscalar field; the infrared perturbation theory was employed
finite number of dangerous operators contributes to eacthere to perform the required summation for the pair corre-
structure function, see Rgi28]. lation function, in the frozen regime, and within the one-loop
One can thus speculate that the anomalous scaling for thegpproximation for the Wilson coefficients. It was argued that,
genuine turbulence can also appear a as linear phenomeninthat special case, anomalous behavior is described by the
in the following sense. Let us split the total velocity field into same exponent below and above the boundsast, but in
the two parts, the background field and the perturba®og.,  general the problem remains open.
large-scale and small-scale, or soft and hard components Physically, this is a manifestation of the fact that fo¥1,
linearize the original stochastic equation with respect to thehe so-called sweeping effect&inematic transfer of the
latter, choose an appropriate statistics for the forgeg.,  small-scale turbulent eddies by the large-scale bhesome
Gaussian distribution with Kolmogorov exponents, the deimportant. In a Galilean-covariant problem such composite
scription suggested for the large-scale field by the experipperators would not give any contribution into the Galilean-
men). Then the small-scale perturbation field will show jnyariant quantitiegstructure functions as it happens in the
anomalous scaling behavior with nontrivial exponents, whichy 5 approach to the stochastic NS equation; see the discus-

can be calculated systematically within a kind sofxpan- ion in Refs.[23,45. As was pointed out in Ref46], the
Sleorrt]l.Jr-:;gfivce(ljrrzcr:ﬂjoi?sthiueato ;g? i?r%?él\rllggtmy iﬁi?]ebgetézzteéaussian model with finite correlation time suffers from the
P Y yapp 9 lack of Galilean invariance and therefore misrepresents the

of Wilson), they will not affect the exponents calculated sweeping effects: they penetrate into the correlation func-
within the linearized model. In such a case the passive vector ping ) yp

field can give the anomalous exponents for the NS velocit)gons OJ the scilar_rind ]E:an Iehad tolthe|_rlstrong l:nphgsmal
field exactly. In other words, such linearized model will be- ependence oL Therefore the value=1 can also be

long to the same universality class as the real NS equatioff/€Wed as the threshold above which the model itself be-

such as the simplified Ising or Heisenberg models are becomes unphysicalTo justify the Gaussian model for>1,
lieved to belong to the same universality class as real ferro?owever, one may recall that the results of Ref] show
magnets or binary alloys. It thus might happen that thdhat it gives a reasonable description of the passive advection
anomalous behavior of the real inertial-range turbulence i an appropriate frame, where the mean velocity field van-
exactly described by one of the nontrivial fixed points for theishes)
passive vector model. We may therefore conclude that the next important step is
Of course, one should not insist too much on such ahe analytical derivation of anomalous exponents of a pas-
simple scenario for the anomalous scaling, but it is worthy ofsive scalar and vector quantities advected by the Galilean
attention. In this connection, we could also recall that thecovariant velocity ensemble, generated by the stochastic NS
passive vector field can indeed reveal the anomalous expequation; this work is now in progress.
nents of the stochastic NS velocity field if the random forc-
ing of the former is chosen to be statistically correlated with
that o_f t_he latter; sefb4]. _ o ACKNOWLEDGMENTS
Validity of the & expansion and the applicability of
the modelA serious question is that of the validity of tlae
expansion and the possibility of the extrapolation of the
results, obtained within the expansions, to the finite values

The authors thank L. Ts. Adzhemyan, A. Kupiainen, P.
Muratore-Ginanneschi, A. N. Vasil'ev, and D. V. Vassilevich
£=0(1). For the rapid-change model, the: expan- fo_r d_|scu53|0ns. The work ofN.V.A. and J.H. was performed
sion works surprisingly well. It was showf29] that the within the framework of the Nordic Grant for Network Co-

knowledge of three terms allows one to obtain reasonabl@Peration with the Baltic Countries and Northwest Russia
predictions for finitee~1: even the plaire expansion cap- (Grant No. FIN-6/2002 M.H. and M.J. were supported by
tures some subtle qualitative features of the anomalous efbe Slovak Academy of SciencéW¥EGA Grant No. 3211
ponents established in analytical and numerical solutions di-V.A. was supported by the Academy of Finlaf@rant No.
the exact zero-mode equations and numerical experimenté9781 and the program “Universities of Russia.” N.V.A.
The agreement can be further improved by using specidhanks the Organizers of the Program on Developed Turbu-
tricks (such as the “inverse’s expansioh or interpolation lence (Vienna, 2002 and the Erwin Schrdinger Interna-
formulas[29]. tional Institute for Mathematical Physics, where a part of this
In the case of the Gaussian model with a finite correlatiorwork was performed and extensively discussed. M.H. grate-
time, however, there is a natural upper bound for the range dllly acknowledges the hospitality of the N.N. Bogoliubov
validity of the results, obtained within the expansion: for Laboratory of Theoretical Physics at JINR Dubna, Russia
e>1 the velocity field(and hence all its powersbecome and the Department of Physical Sciences of the University of
dangerousdits critical dimensiomnA,=1—¢, known exactly  Helsinki, Finland. Discussions with L. Biferale, A. Celani,
due to the Gaussianity, becomes negatiféne spectrum of M. Cencini, T. Dombre, G. Falkovich, K. Gawdeki, A.
their dimensions is unbounded from below, and in order taMazzino, P. Olla, M. Vergassola, and D. Vincenzi are espe-
find the smallmr behavior one has to sum up all their con- cially acknowledged.

046306-23



ANTONOV et al. PHYSICAL REVIEW E 68, 046306 (2003

[1] U. Frisch,Turbulence: The Legacy of A.N. Kolmogor@am- Nauk, 166, 1257(1996 [Phys. Usp39, 1193(1996)].
bridge University Press, Cambridge, 1995 [25] L.Ts. Adzhemyan, N.V. Antonov, and A.N. VasilieVhe Field

[2] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics Theoretic Renormalization Group in Fully Developed Turbu-
(MIT Press, Cambridge, MA, 1975\ol. 2. lence(Gordon & Breach, London, 1999

[3] W.D. McComb, The Physics of Fluid Turbulend€larendon, [26] G.L. Eyink, Phys. Lett. A172 355(1993; Phys. Rev. &8,
Oxford, 1990. 1823(1993; 54, 1497(1996.

[4] K. Gawglzki, A. Kupiainen, and M. Vergassola, Program on [27] B. Duplantier and A. Ludwig, Phys. Rev. Le@6, 247 (1991).
Developed Turbulence, Erwin Scliinger International Insti- [28] M. Lassig, Phys. Rev. LetB4, 2618(2000.
tute for Mathematical Physics, http://www.esi.ac.at/Programs[29] L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. Kabrits,

turbulence2002.html and A.N. Vasil'ev, Phys. Rev. B3, 025303R) (2001)); 64,
[5] Ya.B. Zeldovich, A.A. Ruzmaikin, and D.D. Sokoloffhe Al- 019901E) (2001); 64, 056306(2001).

mighty ChancgWorld Scientific, Singapore, 1990 [30] L.Ts. Adzhemyan and N.V. Antonov, Phys. Rev.58, 7381
[6] P.L. Sulem, J.D. Fournier, and U. Frisch, Lect. Notes Phys. (1998.

104, 321(1979. [31] N.V. Antonov and J. Honkonen, Phys. Rev.6B, 036302ZR)
[7] J. Zinn-JustinQuantum Field Theory and Critical Phenomena (2001.

(Clarendon, Oxford, 1989 [32] L. Ts. Adzhemyan, N.V. Antonov, M. Hnatich, and S.V. No-
[8] A.N. Vasil'ev, Quantum-Field Renormalization Group in the vikov, Phys. Rev. B63, 016309(2000; M. Hnatich, M. Jurci-

Theory of Critical Phenomena and Stochastic Dynanifgts sin, A. Mazzino, and S. Sprinc, Acta Phys. SId&2, 559

Petersburg Institute of Nuclear Physics, St Petersburg,)1998  (2002.

[(in Russian, English translation: Gordon & Breach, in préss [33] N.V. Antonov, A. Lanotte, and A. Mazzino, Phys. Rev.6H,
[9] M. Nelkin, Phys. Rev. Al1, 1737(1979; H.A. Rose and P.L. 6586 (2000.

Sulem, J. Phys(France 39, 441 (1978; L.Ts. Adzhemyan, [34] N.V. Antonov, J. Honkonen, A. Mazzino, P. Muratore-

S.R. Bogdanov, and Yu.V. Syschikov, Vestnik SPBU, Ser. Ginanneschi, Phys. Rev. &, R5891(2000.

Phys. Chem10, 76 (1982; G. Eyink and N. Goldenfeld, Phys. [35] L.Ts. Adzhemyan, N.V. Antonov, A. Mazzino, P. Muratore-

Rev. E50, 4679(1994. Ginanneschi, and A.V. Runov, Europhys. Lé&%, 801 (200J.
[10] K. Gawglzki, Nucl. Phys. B(Proc. Supp).58, 123(1997); D. [36] L.Ts. Adzhemyan and A.V. Runov, Vestnik SPBU, Ser. Phys.
Bernard, K. Gaweézki, T. Hurd, and A. Kupiainerunpub- Chem.4, 85 (2001).
lished; K. Gawglzki, e-print chao-dyn/9610003. [37] L. Ts. Adzhemyan, N.V. Antonov, and A.V. Runov, Phys. Rev.
[11] A.M. Polyakov, Phys. Rev. 52, 6183(1995. E 64, 046310(2001).
[12] T. Bohr, M.H. Jensen, G. Paladin, and A. VulpiaDiynamical [38] M. Vergassola, Phys. Rev. &3, R3021(1996; |I. Rogachev-
Systems Approach to Turbulen@ambridge University Press, skii and N. Kleeorin,jbid. 56, 417 (1997).
Cambridge, 1998 [39] A. Lanotte and A. Mazzino, Phys. Rev.@, R3483(1999.

[13] J. Bec and U. Frisch, ilNew Trends in TurbulengeLes  [40] I. Arad, L. Biferale, and I. Procaccia, Phys. Rev6E 2654
Houches Sessions LXXIV 2000, edited by M. Lesieur, A. Ya- (2000.
glom, and F. DavidSpringer EDP Sciences, Paris, 200dp. [41] N.V. Antonov, Phys. Rev. B0, 6691(1999.

341-383; e-print nlin.CD/0012033. [42] L.Ts. Adzhemyan, N.V. Antonov, and J. Honkonen, Phys. Rev.
[14] G. Falkovich, K. Gawezki, and M. Vergassola, Rev. Mod. E 66, 036313(2002.
Phys.73, 913(2001). [43] N.V. Antonov, Physica D144, 370 (2000.
[15] R.H. Kraichnan, Phys. Rev. Leff2, 1016(1994). [44] V.S. L'vov, Phys. Rep207, 1 (199).
[16] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, [45] L.Ts. Adzhemyan, N.V. Antonov, M.V. Kompaniets, and A.N.
Phys. Rev. B52, 4924(1995; M. Chertkov and G. Falkovich, Vasil'ev, Acta Phys. Slovs2, 565(2002; Int. J. Mod. Phys. B
Phys. Rev. Lett76, 2706(1996. 17, 2137(2003.

[17] K. Gawglzki and A. Kupiainen, Phys. Rev. Letf5 3834  [46] M. Holzer and E.D. Siggia, Phys. Fluids 1820(1994.
(1995; D. Bernard, K. Gawezki, and A. Kupiainen, Phys. [47] M. Avellaneda and A. Majda, Commun. Math. Ph¢81, 381

Rev. E54, 2564(1996. (1990; 146, 139(1992; Q. Zhang and J. Glimmipid. 146,
[18] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Phys. Rev. 217 (1992.
E 58, 1823(1998; Theor. Math. Phys120, 1074(1999. [48] A. Fannjiang, Physica 036, 145(2000; 157, 166E) (2002).
[19] D. Bernard, K. Gawezki, and A. Kupiainen, J. Stat. Phy&0, [49] M. Chaves, K. Gawdzki, P. Horvai, A. Kupiainen, and M.
519 (1998. Vergassola, e-print nlin.CD/0202031.
[20] U. Frisch, A. Mazzino, and M. Vergassola, Phys. Rev. L&@f.  [50] A.P. Kazantzev, Zh. Esp. Teor. Fiz.53, 1806 (1967 [Sov.
5532(1998; U. Frisch, A. Mazzino, A. Noullez, and M. Ver- Phys. JETR26, 1031(1968].
gassola, Phys. Fluidkl, 2178(1999. [51] D. Vincenzi, J. Stat. Phy€.06, 1073(2002.

[21] A. Celani and M. Vergassola, Phys. Rev. L&, 424 (2001). [52] I. Arad, V. L'vov, E. Podivilov, and I. Procaccia, Phys. Rev. E
[22] I. Arad, L. Biferale, A. Celani, I. Procaccia, and M. Vergassola, 62, 4904(2000.

Phys. Rev. Lett87, 164502(2002). i [53] I. Arad and I. Procaccia, Phys. Rev.68, 056302(2001).
[23] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Zhkép. [54] R. Benzi, L. Biferale, and F. Toschi, Eur. Phys. J2B 125

Teor. Fiz.95, 1272(1989 [Sov. Phys. JETBS8, 733(1989]; (2002).

N.V. Antonov, Zap. Nauchn. Semin. LOMI69, 18 (1988. [55] J.D. Fournier, P.L. Sulem, and A. Pouquet, J. Phy$5A1393
[24] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Usp. Fiz. (1982.

046306-24



TURBULENCE WITH PRESSURE: ANOMALOS . .. PHYSICAL REVIEW E 68, 046306 (2003

[56] L.Ts. Adzhemyan, A.N. Vasil’'ev, and M. Hnatich, Theor. Math. [63] A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola, Phys.

Phys.64, 777(1985; 72, 940 (1987). Rev. Lett.84, 2385(2000; Phys. Fluidsl7, 287 (2001).
[57] I. Arad, B. Dhruva, S. Kurien, V.S. L'vov, |. Procaccia, and [64] W. Miller, Symmetry Groups and Their Applicatiotica-
K.R. Sreenivasan, Phys. Rev. Ledtl, 5330(1998. demic Press, New York, 1972A.0. Barut, and R. Rezka,

[58] I. Arad, L. Biferale, |. Mazzitelli, and |. Procaccia, PhyS Rev. Theory ofGroup Representations and Apphca’“mﬂd Sci-
Lett. 82, 5040(1999. entific, Singapore, 1986 R. Camporesi, Phys. Refd91 1
[59] I. Arad, V.S. L'vov, and I. Procaccia, Phys. Rev.59, 6753 (1990.
(1999.. _ _ [65] M.A. Rubin and C.R. Ordéez, J. Math. Phys25, 2888
[60] S. Kurien, V.S. Lvov, |. Procaccia, and K.R. Sreenivasan, (1984); 26, 65(1985; E. Elizalde, M. Lygren, and D.V. Vassi-
Phy_s. Rev. 51, 407 (2000. ) levich, ibid. 37, 3105(1996; Nuovo Cimento Soc. Ital. Fis., A
[61] L. Biferale, I. Daumont, A. Lanotte, and F. Toschi, Phys. Rev. 104A, 743(1997): Int. J. Mod. Phys. A8, 1637 (1993

E 66, 056306(2002. :
; . . . [66] N.V. Antonov, Zap. Nauchn. Semin. LOM269, 79 (2000;
[62] L. Biferale, E. Calzavarini, T. Toschi, and R. Tripiccone, e-print nlin.CD/0007015.

e-print nlin.CD/0302036.

046306-25



