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Turbulence with pressure: Anomalous scaling of a passive vector field
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The field theoretic renormalization group~RG! and the operator-product expansion are applied to the model
of a transverse~divergence-free! vector quantity, passively advected by the ‘‘synthetic’’ turbulent flow with a
finite ~and not small! correlation time. The vector field is described by the stochastic advection-diffusion
equation with the most general form of the inertial nonlinearity; it contains as special cases the kinematic
dynamo model, linearized Navier-Stokes~NS! equation, the special model without the stretching term that
possesses additional symmetries and has a close formal resemblance with the stochastic NS equation. The
statistics of the advecting velocity field is Gaussian, with the energy spectrumE(k)}k12« and the dispersion
law v}k221h, k being the momentum~wave number!. The inertial-range behavior of the model is described
by seven regimes~or universality classes! that correspond to nontrivial fixed points of the RG equations and
exhibit anomalous scaling. The corresponding anomalous exponents are associated with the critical dimensions
of tensor composite operators built solely of the passive vector field, which allows one to construct a regular
perturbation expansion in« andh; the actual calculation is performed to the first order~one-loop approxima-
tion!, including the anisotropic sectors. Universality of the exponents, their~in!dependence on the forcing,
effects of the large-scale anisotropy, compressibility, and pressure are discussed. In particular, for all the
scaling regimes the exponents obey a hierarchy related to the degree of anisotropy: the more anisotropic is the
contribution of a composite operator to a correlation function, the faster it decays in the inertial range. The
relevance of these results for the real developed turbulence described by the stochastic NS equation is dis-
cussed.
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I. INTRODUCTION

It has become a commonplace to complain that theore
understanding of turbulence remains the last unsolved p
lem of classical physics. Of course, the concept of turbule
refers to a great deal of disparate physical situations~‘‘al-
most as varied as in the realm of life,’’ Ref.@1#, p. 1! and any
exhaustive and ultimate ‘‘theory of turbulence,’’ of cours
can hardly ever be established. There is, however, a clas
‘‘list’’ of phenomena ~or, rather, classes of phenomena! that
represent and illustrate the main features of turbulence:
istence and stability of solutions of hydrodynamics eq
tions, convective turbulence,~in!stability of laminar flows
and origin of turbulence, and so on. Those topics, which
of great practical and conceptual importance, have alw
remained the focus of attention for theoreticians. One
them is the fully developed~homogeneous, isotropic
inertial-range! hydrodynamical turbulence. Detailed descri
tion of this concept and the bibliography of this old but s
open subject can be found in the classical monographs@1–3#.

Turbulent flows that occur in various liquids or gases
very high Reynolds numbers reveal a number of general
pects~cascades of energy or other conserved quantities, s
ing behavior with apparently universal ‘‘anomalous exp
nents,’’ intermittency, statistical conservation laws, and
on!, which support the hopes that those phenomena ca
explained within a self-contained and internally consist
theory. Recent developments in this area are presented
summarized in Ref.@4#.
1063-651X/2003/68~4!/046306~25!/$20.00 68 0463
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The most remarkable features of developed turbulence
encoded in the single term of intermittency. This concept
no rigorous definition within the classical probabilist
theory; an excellent introduction can be found in Ref.@5# and
Chap. 8 Ref.@1#. Roughly speaking, intermittency mean
that statistical properties~for example, correlation or struc
ture functions of the turbulent velocity field! are dominated
by rare spatiotemporal configurations, in which the regio
with strong turbulent activity have exotic~fractal! geometry
and are embedded into the vast regions with regular~lami-
nar! flow.

In the turbulence, such a phenomenon is believed to
related to strong fluctuations of the energy flux. Therefo
it leads to deviations from the predictions of the celeb
ted Kolmogorov-Obukhov~KO! phenomenological theory
@1–3#. Such deviations, referred to as ‘‘anomalous’’ or ‘‘no
dimensional’’ scaling, manifest themselves in singular~argu-
ably power-like! dependence of correlation or structure fun
tions on the distances and the integral~external! turbulence
scaleL. The corresponding exponents are certain nontriv
and nonlinear functions of the order of the correlation fun
tion, the phenomenon referred to as ‘‘multiscaling.’’

Within the framework of numerous semiheuristic mode
the anomalous exponents are related to statistical prope
of the local dissipation rate, the fractal~Haussdorf! dimen-
sion of structures formed by the small-scale turbulent edd
the characteristics of nontrivial structures~vortex filaments!,
and so on; see Refs.@1–3# for a review and further refer-
©2003 The American Physical Society06-1
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ences. The common drawback of such models is that they
only loosely related to underlying hydrodynamical equatio
involve arbitrary adjusting parameters and, therefore, can
be considered to be the basis for construction of a system
perturbation theory in certain small~at least formal! expan-
sion parameter; see, e.g., the remark in Ref.@6#. Thus serious
doubts remain about the universality of anomalous expon
and the very existence of deviations from the KO theory.

The term ‘‘anomalous scaling’’ reminds of the critic
scaling in models of equilibrium phase transitions. In tho
the field theoretic methods were successfully employed
establish the existence of self-similar~scaling! regimes and
to construct regular perturbative calculational schemes~the
famous« expansion and its relatives! for the corresponding
exponents, scaling functions, ratios of amplitudes, etc.;
e.g., Refs.@7,8#, and references therein.

Here and below, by ‘‘field theoretic methods’’ we mea
diagrammatic and functional techniques, renormalizat
theory and renormalization group, composite operators
operator algebras~operator-product or short-distance expa
sions!, instanton calculus, and so on.

Of course, the analogy is far from exact. There is a
difference between the concepts of critical scaling in equi
rium phase transitions and anomalous scaling in turbule
Formally speaking, in both cases one deals with nontriv
powers of the distance, but in the first case they are divi
by the ultraviolet~UV! scale,, while in the second the sam
role is played by the integral, or infrared~IR! scaleL. It was
hoped that a close analogy can be achieved if the momen
space for turbulence be confronted with the coordinate sp
for critical phenomena. This idea was expressed in a p
nomenological ‘‘dictionary,’’ where, in particular, the viscou
length, ~that is, the UV scale of turbulence! was confronted
with the correlation length~that is, the IR scale of critica
phenomena!, while the integral scaleL was confronted with
the molecular length; see, e.g., Ref.@9#. Hence the idea of
‘‘inverse’’ renormalization group; see Ref.@10# for a recent
discussion.

The aforementioned phenomenon of multiscaling w
also often opposed to critical scaling, because in the la
‘‘everything is determined by just two exponentsh andn. ’’

It has usually been stressed that the intermittency is
sentially a strongly nonlinear phenomenon, and therefore,
anomalous scaling in turbulence cannot be treated within
kind of perturbation theory. Probably for this reason~and
because of a very low quality of some related papers! the
field theoretic methods, for many years, have been ignore
taken with a strong skepticism by the turbulent commun
The sharpened formulation of the state of the art, given
Ref. @1#, is that the results obtained by diagrammatic me
ods are either wrong or can be derived by much simp
methods~pp. 214–215!. Another, and in a sense opposit
point of view was expressed in Ref.@11#: ‘‘ . . . the reason
~that the problem of turbulence is still not solved! lies in the
fact that the necessary field theoretic tools have appe
only recently.’’

Although the theoretical description of the fluid turb
lence on the basis of the stochastic Navier-Stokes~NS! equa-
tions remains essentially an open problem, considera
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progress has been achieved in understanding simpl
model systems that share some important properties with
real problem: shell models@12#, stochastic Burgers equatio
@13#, and passive advection by random ‘‘synthetic’’ veloci
fields@14#. Although the shell models, discrete analogs of t
NS equation, exhibit pronounced anomalous scaling, it
mostly been studied within numerical simulations. The B
gers equation with random or deterministic initial conditio
has been extensively studied analytically, and it exhib
strong intermittency and the energy cascade. The mode
interesting in itself and has various applications~e.g., de-
scription of the development of singularities in se
gravitating matter!, but its relevance for the real hydrody
namical turbulence is far from obvious. In particula
burgulence is a ‘‘turbulence without pressure’’@11# and, what
is more, without the energy conservation~in more than one
dimension!, while the conservation of energy and the ener
exchange between different velocity components are v
important features of the genuine fluid turbulence.

Probably the most important progress in the subje
achieved in the last decade of the twentieth century, w
related to a simplified model of the fully developed turb
lence, the so-called rapid-change model. The model, wh
dates back to classical studies of Batchelor, Obukhov, K
ichnan, and Kazantsev, describes a scalar or vector qua
~e.g., temperature, concentration of admixture particles, o
weak magnetic field!, passively advected by a Gaussian v
locity field, decorrelated in time and self-similar in spa
~the latter property mimics some features of a real turbul
velocity ensemble!.

There, for the first time the existence of anomalous sc
ing was established on the basis of a microscopic model@15#,
and the corresponding anomalous exponents were der
within controlled approximations@16,17# and regular pertur-
bation schemes@18#. Detailed review of the recent theoret
cal research on the passive scalar problem and more r
ences can be found in Ref.@14#.

It is important to emphasize here that the two alternat
~or complementary! analytical approaches to the rapid
change model are both field theoretic. In the ‘‘zero-mo
approach,’’ developed in Refs.@16,17# ~see also Ref.@14#!,
nontrivial anomalous exponents are related to the zero mo
~unforced solutions! of the closed exact differential equation
satisfied by the equal-time correlation functions. From
field theoretic viewpoint, this is a realization of the we
known idea of self-consistent~bootstrap! equations, which
involve skeleton diagrams with dressed lines and drop
bare terms~see, e.g., Sec. 4.35 in Ref.@8#!. Owing to special
features of the rapid-change models~linearity in the passive
field and time decorrelation of the advecting field! such
equations are exactly given by one-loop approximations,
the resulting equations in the coordinate space are diffe
tial ~and not integral or integro-differential as in the case o
general field theory!. In this sense, the model is ‘‘exactl
soluble.’’ Furthermore, in contrast to the case of nonz
correlation time, closed equations are obtained for theequal-
time correlations, which are Galilean invariant and, there
fore, not affected by the so-called ‘‘sweeping effects’’ th
would obscure the relevant physical interactions.
6-2
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TURBULENCE WITH PRESSURE: ANOMALOUS . . . PHYSICAL REVIEW E 68, 046306 ~2003!
In this connection, it should be noted that, due to the ti
decorrelation, in the rapid-change model there is no prob
in relating Eulerian and Lagrangian statistics of the veloc
field: they are identical. This allows one to perform ve
accurate numerical simulations in the Lagrangian frame;
Ref. @20#.

From a more physical point of view, zero modes can
interpreted as statistical conservation laws in the dynamic
particle clusters@19#. The concept of statistical conservatio
laws appears rather general, being also confirmed by num
cal simulations of Refs.@21,22#, where the passive advectio
in the two-dimensional NS velocity field@21# and a shell
model of a passive scalar@22# were studied. This observatio
is rather intriguing because in those models no closed e
tions for equal-time quantities can be derived due to the
that the advecting velocity has a finite correlation time~for a
passive field advected by a velocity with given statisti
closed equations can be derived only for different-time c
relation functions, and they involve infinite diagrammatic s
ries!.

The second systematic analytical approach to the ra
change model, proposed in paper@18#, is based on the field
theoretic renormalization group~RG! and operator-produc
expansion~OPE!.

To avoid possible confusion, it should be explained tha
Ref. @18# and subsequent papers, the conventional renorm
ization group~and not the inverse RG in the spirit of Ref
@9,10#! was employed, which is based on the standard re
malization procedure~elimination of UV divergences!. The
solution proceeds in two main stages. In the first stage,
multiplicative renormalizability of the corresponding fie
theoretic model is demonstrated and the differential
equations for its correlation functions are obtained. T
asymptotic behavior of the latter on their UV argument (r /,)
for r @, and any fixed (r /L) is given by IR stable fixed
points of those equations. It involves some ‘‘scaling fun
tions’’ of the IR argument (r /L), whose form is not deter
mined by the RG equations. In the second stage, their be
ior at r !L is found from the OPE within the framework o
the general solution of the RG equations. There, the cru
role is played by the critical dimensions of various compos
operators, which give rise to an infinite family of indepe
dent scaling exponents~and hence to multiscaling!.

Of course, both these stages~and thus the phenomenon o
multiscaling! have long been known in the RG theory
critical behavior, where the OPE is used in the analysis of
small-(r /L) form of the scaling functions; see, e.g., Re
@7,8#, and references therein. The distinguishing feature, s
cific to models of turbulence, is the existence of compos
operators withnegativecritical dimensions. Such operato
are termed ‘‘dangerous,’’ because their contributions to
OPE diverge at (r /L)→0. In the models of critical phenom
ena, nontrivial composite operators always have strictly p
tive dimensions, so that they only determine correctio
@vanishing for (r /L)→0] to the leading terms@finite for
(r /L)→0] in the scaling functions~the leading terms are
related to the simplest operator unity with zero critical
mension!.

The OPE and the concept of dangerous operators in
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stochastic hydrodynamics were introduced and investiga
in detail in Ref.@23#; detailed discussion of the NS case c
be found in the review paper@24#, the monograph@25#, and
Chap. 6 of Ref.@8#. Later, the idea of negative dimension
was repeatedly introduced in connection with the anomal
scaling in turbulence@26#, models with multifractal behavior
@27#, and the phenomena related to the Burgers equa
@11,28#.

The RG analysis of Ref.@18# has shown that dangerou
operators are indeed present in the rapid-change model,
that their dimensions can be calculated systematically wit
a regular perturbation expansions, similar to the famou«
expansion of the critical exponents. Owing to the linearity
the original stochastic equations in the passive field, o
finite number of dangerous operators can contribute to
given structure function, which allows one to identify th
corresponding anomalous exponent with the critical dim
sion of an individual composite operator. The actual calcu
tions were performed to the second@18# and third@29# orders
in « ~two-loop and three-loop approximations, respectivel!.
Generalizations to the cases of compressible@30,31# and an-
isotropic @32# velocity ensembles and the vector advect
field @33–37# have been obtained.

The two approaches complement each other very well:
zero-mode technique allows for exact~nonperturbative! so-
lutions for the anomalous exponents related to second-o
correlation functions@16,38–40# ~they are nontrivial for pas-
sive vector fields or anisotropic sectors for scalar field!,
while the RG approach form the basis for systematic per
bative calculations of the higher-order anomalous expone
@18,29–31#. For the cases of anisotropic velocity ensemb
or/and passively advected vector fields, where the calc
tions become rather involved, all the existing results
higher-order correlation functions were derived only
means of the RG approach and only to the leading order«
@32–37#.

Besides the calculational efficiency, an important adv
tage of the RG approach is its relative universality: it is n
bound to the aforementioned ‘‘solubility’’ of the rapid
change model and can also be applied to the case of fi
correlation time or non-Gaussian advecting field@41–43#.

It has been usually stressed that intermittency and ano
lous scaling in turbulence are signatures of highly nonlin
nature of underlying dynamics. The main lesson that can
learned from the rapid-change model is, probably, that s
phenomena can be encountered in a model, which is linea
the passive field, and in which the advecting velocity field
Gaussian and nonintermittent~in contrast to a more realistic
case of the stochastic NS equation!. What is more, the RG
and the OPE approach show that intermittency~at least in the
rapid-change model! can be essentially a perturbative ph
nomenon, in the sense that it is contained completely alre
in the ordinary~primitive! perturbation theory around a fre
~Gaussian! approximation. The infinite resummation of th
primitive perturbation series, performed by the RG and OP
gives rise to improved representations of the correlat
functions, which reveal anomalous scaling behavior. On
other hand, these representations can be expanded bac
6-3
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reproduce the original perturbation series, no less and
more.

Existence of exact solutions, regular perturbati
schemes, and accurate numerical simulations allows on
discuss, for the example of the rapid-change model and
relatives, the issues that are interesting within the gen
context of fully developed turbulence: universality and sa
ration of anomalous exponents, effects of compressibi
anisotropy and pressure, persistence of the large-scale an
ropy and hierarchy of anisotropic contributions, converge
properties and nature of the« expansions, and so on.

So far, however, aforementioned field theoretic meth
have had only limited success when applied to the real fl
turbulence or, better to say, to the stochastic NS equatio

The main problem of the self-consistency approach to
stochastic NS equation is the elimination of the kinema
sweeping effects, which obscure relevant physical inter
tions and lead to a spurious strong dependence of the c
lation functions on the integral scale. This problem w
claimed to have been solved using the so-called internal
grammatic technique@44#, but it leads to the violation of the
translational invariance. Probably for this reason no attem
have been made to explicitly solve the resulting equation
least in the simplest one-loop approximation.

The standard RG approach to the stochastic NS equa
allows one to prove the independence of the inertial-ra
correlation functions of the viscous scale~the second Kol-
mogorov hypothesis! and calculate a number of represen
tive constants within a regular« expansions in a reasonab
agreement with experiment; see, e.g., Refs.@8,24,25# for a
review and Ref.@45# for the most recent results. The proble
of the anomalous scaling, that is, the dependence of
Galilean-invariant correlation functions on the IR scaleL,
still remains open, probably due to the lack of an appropr
expansion parameter. Dangerous operators in that mode
absent in the« expansions and can appear only at fin
values of«. This means that they can be reliably identifi
only if their dimensions are derivedexactlywith the aid of
Schwinger equations or Galilean symmetry. Due to the n
linear nature of the problem, they enter the correspond
OPE as infinite families whose spectra of dimensions are
bounded from below, and in order to find their depende
on the IR scaleL one has to sum up all their contribution
The needed summation of the most singular contributio
related to the powers of the velocity field~their critical di-
mensions are known exactly!, was performed in Ref.@23#
with the aid of the so-called infrared perturbation theory
the case of the different-time pair correlation functions. It h
revealed their strong dependence onL, which physically can
be explained by the aforementioned sweeping effects. T
demonstrates that, contrary to what is sometimes claim
these effects can be properly described within the RG
proach, but one should combine the RG and OPE techniq
and go beyond the plain« expansions. Analysis of theL
dependence of the Galilean-invariant objects such as
structure functions requires the explicit construction of
dangerous invariant scalar operators, exact calculation
their critical dimensions, and summation of their contrib
tions in the corresponding OPE. This is clearly not a sim
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problem and it requires considerable improvement of
present techniques.

As the intermediate step in the investigation of interm
tency and anomalous scaling it is important to study sim
fied models that are, in a number of respects, closer to
real NS turbulence but still allow for analytical treatment. A
important step is breaking the artificial assumption of t
time decorrelation of the advecting velocity field; see t
remarks in Refs.@21,22#.

In Refs. @41,42# ~see also Ref.@43# for the case of com-
pressible flow! the RG and OPE were applied to the proble
of a passive scalar advected by a Gaussian self-similar
locity with finite ~and not small! correlation time. The energy
spectrum of the velocity in the inertial range has the fo
E(k)}k122«, while the correlation time at the momentumk
scales ask221h. It was shown that, depending on the valu
of the exponents« andh, the model reveals various types o
inertial-range scaling regimes with nontrivial anomalous e
ponents, which were explicitly derived to the first@41,43#
and second@42# orders of the double expansion in« andh.
Earlier, a similar model was proposed and studied in de
~using numerical simulations, in two dimensions! in Ref.
@46#. Various aspects of the transport and dispersion of p
ticles in random Gaussian self-similar velocity fields wi
finite correlation time were also studied in Refs.@47–49#.

Another important step toward the NS turbulence is
consider the turbulent advection of passivevectorfields. The
latter can have different physical meaning: magnetic field
the Kazantsev-Kraichnan model of hydromagnetic turb
lence in the kinematic approximation; perturbation in the l
earized NS equation with prescribed statistics of the ba
ground field; density of an impurity with internal degrees
freedom, etc.

Despite the obvious practical significance of these phy
cal situations, the passive vector problem is especially in
esting because of the insight it offers into the inertial-ran
behavior of the NS turbulence. Owing to the coupling b
tween different components of the vector field~both by the
dynamical equation and the incompressibility condition! and
to the presence of a new stretching term in the dynam
equation, which couples the advected quantity to the grad
of the advecting velocity, the behavior of the passive vec
field appears much richer than that of the scalar field: ‘‘ . . .
there is considerably more life in the large-scale transpor
vector quantities,’’~p. 232 of Ref.@1#!. Indeed, passive vec
tor fields reveal anomalous scaling already on the level of
pair correlation function@38#. They also develop interestin
large-scale instabilities that can be interpreted as manife
tion of the dynamo effect~in kinematic approximation!; see,
e.g., Refs.@38,50,51#. Other important issues are mixing o
composite operators, responsible for the anomalous sca
and the effects of pressure on the inertial-range behav
especially in anisotropic sectors.

In the scalar case, the anomalous exponents for all st
ture functions are given by a single expression which
cludesn, the order of a function, as a parameter@16–18#.
This remains true for the vector models with the stretch
term @33,35#. In the special vector model without the stretc
ing term, considered e.g. in@36,37#, the number and the form
6-4
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TURBULENCE WITH PRESSURE: ANOMALOUS . . . PHYSICAL REVIEW E 68, 046306 ~2003!
of the operators entering into the relevant family depend
sentially onn, and different structure functions should b
studied separately. As a result, no general expression v
for all n exists in the model, and the anomalous expone
are related by finitefamilies of composite operators rathe
than by individual operators@36,37#. In this respect, such a
model is closer to the nonlinear NS equation, where
inertial-range behavior of structure functions is believed
be related with the Galilean-invariant operators, which fo
infinite families that mix heavily in renormalization; se
Refs.@24,25#.

Another important question that can be addressed for
passive vector model is the effects of nonlocalpressureterms
on the anomalous scaling, in particular, the consistency
the hierarchical picture for the anisotropic anomalous con
butions, known for the pressureless scalar@41,43,52# and
magnetic@39,33# cases, with the presence of nonlocal ter
in the closed equations for the correlation functions, cau
by the pressure contributions@53# ~a more detailed treatmen
is given in Ref.@37#!.

The general vector model, introduced in Ref.@35#, in-
cludes as special cases the kinematic magnetic model, lin
ized NS equation, and the special model without the stre
ing term, and thus allows one to control the press
contribution and quantitatively study its effects on t
anomalous scaling. The generalized model also natur
arises within the multiscale technique, as a result of the
tex renormalization@1#.

Finally, it should be noted that, as the experience with
passive fields shows, the stochastic NS equation will sh
anomalous scaling already in its linearized form. Thus
results obtained for the passive vector quantity, with an
propriate statistics of the background field, can be conside
as an approximation to the full-fledged NS problem, whi
in principle, can be systematically improved by includin
nonlinear term as the perturbation. It was also argued t
with a proper choice of the random stirring, the passive v
tor model can reproduce the anomalous exponents of the
velocity field exactly@54#.

The aforementioned works, however, have mostly b
confined with the Kraichnan velocity ensemble with ze
correlation time.

In the present paper, we consider the model of the pas
vector field with the most general form of the nonlinear ter
advected by the synthetic velocity ensemble with a fin
~and not small! correlation time. The advected velocity fie
is Gaussian, with the inertial-range spectrum of the fo
E(k)}k122« and the dispersion lawv}k22h, wherek is the
momentum~wave number!. Thus we generalize the gener
vector model studied in Ref.@35# for the zero-correlated
case, to the ensemble of the advecting velocity field e
ployed, e.g., in Refs.@41–43# for the case of passive scala

We shall study anomalous scaling, stability of the scal
regimes and analytically derive the anomalous exponent
the first order in«;h. This allows us to investigate th
universality of the anomalous exponents and the effects
compressibility, pressure, correlation time, and large-sc
anisotropy on the inertial-range anomalous scaling. The p
of the paper is as follows.
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In Sec. II we give detailed definition of the general vect
model and the advecting velocity ensemble and discuss
interesting special cases: the rapid-change and frozen
gimes, kinematic dynamo model and linearized NS equat
and so on. We give the field theoretic formulation of t
original stochastic problem and present the correspond
diagrammatic technique. In Sec. III we analyze the UV
vergences of the model, establish its multiplicative renorm
izability, and present the renormalization constants in
one-loop approximation. In Sec. IV we analyze possible sc
ing regimes of the model, associated with nontrivial a
physically acceptable fixed points of the corresponding
equations. There are seven such regimes, any one of t
can be realized depending on the values of the model par
eters («, h, and others!. We discuss the physical meaning
these regimes~e.g., some of them correspond to zero, fini
or infinite correlation time of the advecting field, to the ma
netic case, or linearized NS equation! and their regions of
stability in the space of the model parameters. In Sec. V
give the scaling representation for a general correlation fu
tion and present the general expression for the critical dim
sion of a composite field~operator!. Then we consider the
most interesting case of tensor composite operators b
only of the passive vector field, which play a crucial role
further discussion of the anomalous scaling. The critical
mension of such an operator with arbitrary number of
fields and vector indices is presented to first order in«;h.
In Sec. VI we introduce the operator-product expansion a
demonstrate its relevance to the issue of inertial-ra
anomalous scaling. We show that the anomalous expon
in our model can be identified with the critical dimensions
aforementioned composite operators and present the lea
terms of the inertial-range behavior for a number of corre
tion functions. In Sec. VII we show that the anomalous e
ponents of anisotropic contributions, determined by the cr
cal dimensions of tensor composite fields, obey the hierar
relations similar to those known for the passive scalar a
zero-correlated cases. We also discuss the dependence
anomalous exponents on the compressibility and press
and the effects of these factors on the hierarchy relatio
The results obtained are briefly reviewed and discusse
the Conclusion.

II. DESCRIPTION OF THE MODEL: THE FIELD
THEORETIC FORMULATION

Here and below, we denotex[$t,x%, ] t[]/]t, ] i
[]/]xi , and d is the ~arbitrary! dimensionality of thex
space.

We confine ourselves to the case of transve
~divergence-free! passive vector fieldu i(x), while the ad-
vecting fieldv(x)[$v i(x)% may have a longitudinal~poten-
tial! component, so that] iu i50 and ] iv iÞ0. Thus the
advection-diffusion equation has the form

] tu i1Vi
(1)2A0Vi

(2)1] iP5k0]2u i1 f i , ~2.1!

with the nonlinear terms
6-5
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Vi
(1)[] j~v ju i !, Vi

(2)[] j~v iu j !5u j] jv i . ~2.2!

HereA0 is an arbitrary parameter,P(x) is the pressure,k0 is
the diffusivity, ]2 is the Laplace operator, andf i(x) is a
Gaussian stirring force with zero mean and correlator

^ f i~x! f j~x8!&5d~ t2t8! Ci j ~r /L !, r5x2x8. ~2.3!

The parameterL is an integral scale related to the stirring a
Ci j is a dimensionless function finite asL→`. Its precise
form is unessential; for generality, it is not assumed to
isotropic. The forcef i(x) maintains the steady state of th
system and gives rise to nonzero correlation functions of
field u. In a more realistic formulation it is replaced by a
imposed nonzero mean value^u&, see, e.g., Refs.@39,33#.

Nonlinear terms are chosen in the form of total deriv
tives, so that Eq.~2.1! is the conservation law foru and, for
A051, gives the well-known equation for the magnetic fie
in the hydromagnetic problem. The amplitude factor in fro
of the first nonlinear term in Eq.~2.1! can be absorbed b
rescaling of the velocity field and thus we set it to unity. T
third possible structure,Vi

(3)[] i(v ju j ), can be absorbed into
the pressure term] iP.

Besides the magnetic case (A051), model~2.1! includes
as special cases the linearized NS equation with prescr
statistics of the background field (A0521), and the model
of passively advected vector impurity (A050), which pos-
sesses an additional symmetry,u→u1const, and has an in
trinsic formal resemblance with the stochastic NS equat
see Ref.@36#. In these examples, the vector field has differe
physical interpretations: magnetic field, weak perturbation
the prescribed background flow, concentration or density
the impurity particles with an internal structure.

Owing to the transversality condition, the pressure can
expressed as the solution of the Poisson equation,

]2P5~A021!] i] j~v ju i !. ~2.4!

For A051 ~magnetic case! the pressure vanishes. In th
case Eq.~2.1! also describes dynamics of the vorticity fie
advected by a given background velocity field, see, e.g., R
@1#.

In the real problem, the velocityv(x) satisfies the NS
equation, probably with additional terms that describe
feedback of the advected fieldu(x). We shall begin, how-
ever, with a simplified model where the statistics ofv(x) is
given: it is a Gaussian field with zero mean and correlat
function

^v i~x!v j~x8!&5E dv

2pE dk

~2p!d
$Pi j ~k!1aQi j ~k!%Dv~v,k!

3exp@2 i ~ t2t8!1 ik•~x2x8!#. ~2.5!

Here Pi j (k)5d i j 2kikj /k2 and Qi j (k)5kikj /k2 are the
transverse and the longitudinal projectors, respectively,d is
the dimensionality of thex space,a>0 is a free paramete
(a50 corresponds to the divergence-free advecting fie
] iv i50). For the functionDv we choose
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Dv~v,k!5
g0u0k0

3k42d22«2h

v21@u0k0k22h#2
. ~2.6!

For the energy spectrum of the fieldv we thus obtainE(k)
.kd21*dvDv(v,k).g0k0

2k122«. Therefore, the coupling
constantg0.0 and the exponent« describe the equal-time
velocity correlator or, equivalently, the energy spectru
while the constantu0.0 and the exponenth are related to
the frequencyv.u0k0 k22h characteristic of the modek.
The factork0

3 in the numerator of Eq.~2.6! is explicitly iso-
lated for the convenience later on.

The exponents« andh are the analogs of the RG expa
sion parameter«542d in the theory of critical behavior,
and we shall use the traditional term ‘‘« expansion’’ for the
double expansion in the«-h plane around the origin«5h
50, with the additional convention thath5O(«). The IR
regularization is provided by the cutoff in integral~2.5! from
below atk.m, wherem;1/L is the reciprocal of the inte-
gral scale. Dimensionality considerations show that the c
pling constantsg0 , u0 are related to the characteristic U
momentum scaleL;1/, by

g0.L2«, u0.Lh. ~2.7!

Model ~2.5! and~2.6! contains two special cases that po
sess some interest of their own. In the limitu0→`, g08
[g0 /u05const, we arrive at the rapid-change model:

Dv~v,k!→g08k0 k2d2z, z[2«2h, ~2.8!

and the limitu0→0, g05const corresponds to the case of
‘‘frozen’’ velocity field ~or ‘‘quenched disorder’’!:

Dv~v,k!→g0k0
2k2d1222«pd~v!, ~2.9!

then the velocity correlator~2.5! is independent of the time
variablet2t8 in the t representation.

The stochastic problem~2.1!, ~2.3!, and~2.5! is equivalent
to the field theoretic model of the extended set of three fie
F[$u8,u,v% with action functional

S~F!5u8D fu8/21u8@2] t1k0]2u2V(1)1A 0V(2)#

2vDv
21v/2, ~2.10!

with V(1,2) from Eq. ~2.2!. This means that statistical ave
ages of random quantities in the original stochastic prob
can be represented as functional averages with the we
expS(F). The first five terms in Eq.~2.10! represent the so
called Martin-Siggia-Rose action for the stochastic probl
~2.1! and ~2.3! at fixedv ~see, e.g., Refs.@8,24,25#, and ref-
erences therein!, while the last term represents the Gauss
averaging overv. HereD f andDv are the correlation func-
tions ~2.3! and ~2.5!, respectively,u8[u i8(x) is an auxiliary
transverse vector field, the required integrations overx
5(t,x) and summations over the vector indices are impli
for example,

u8] tu[E dtdxu i8~ t,x!] t u i~ t,x!.
6-6
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The pressure term can be omitted in functional~2.10! owing
to the transversality of the auxiliary field:

E dxu i8] iP52E dxP] iu i850.

Of course, this does not mean that the pressure contribu
can simply be neglected: the fieldu8 acts as the transvers
projector and selects the transverse part of the expressio
the square brackets in Eq.~2.10!.

Model ~2.10! corresponds to a standard Feynman d
grammatic technique with the triple vertexu8@2V(1)

1A 0V(2)# and bare propagators in the frequenc
momentum (v2k) representation

^u iu j8&05
Pi j ~k!

~2 iv1k0k2!
,

^u iu j&05
Ci j ~k!

~v21k0
2k4!

, ^u i8u j8&050, ~2.11!

where Ci j (k) is the Fourier transform of the functio
Ci j (r /L) from Eq.~2.3!; the bare propagator^v iv j&0 is given
by Eq. ~2.5!.

III. UV RENORMALIZATION: RG FUNCTIONS
AND RG EQUATIONS

The analysis of UV divergences is based on the anal
of canonical dimensions. Dynamical models of type~2.10!,
in contrast to static models, have two scales, i.e., the can
cal dimension of some quantityF ~a field or a parameter in
the action functional! is described by two numbers, the m
mentum dimensiondF

k and the frequency dimensiondF
v ; see,

e.g., Refs. @8,24,25#. They are determined so that@F#

;@L#2dF
k
@T#2dF

v
, whereL is the length scale andT is the

time scale. The dimensions are found from the obvious n
malization conditionsdk

k52dx
k51, dk

v5dx
v50, dv

k 5dt
k

50, dv
v52dt

v51, and from the requirement that each te
of the action functional be dimensionless~with respect to the
momentum and frequency dimensions separately!. Then,
based ondF

k and dF
v , one can introduce the total canonic

dimensiondF5dF
k 12dF

v ~in the free theory,] t}]2), which
plays in the theory of renormalization of dynamical mod
the same role as the conventional~momentum! dimension
does in static problems.

The dimensions for model~2.10! are given in Table I,
including the parameters which will be introduced later o

TABLE I. Canonical dimensions of the fields and parameters
model ~2.10!.

F u u8 v n,n0

m51/L,
m,L g0 u0

g,u,
A0 ,A,a

dF
k 0 d 21 22 1 2« h 0

dF
v 21/2 1/2 1 1 0 0 0 0

dF 21 d11 1 0 1 2« h 0
04630
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From the table it follows that the model is logarithmic~the
coupling constantsg0 , u0 are dimensionless! at «5h50, so
that the UV divergences in the correlation functions have
form of the poles in«, h, and their linear combinations.

The total canonical dimension of an arbitrary on
irreducible correlation functionG5^F•••F&1-ir is given by
the relation dG5dG

k 12dG
v5d122NFdF , where NF

5$Nu ,Nu8 ,Nv% are the numbers of corresponding fields e
tering into the functionG, and the summation over all type
of the fields is implied. The total dimensiondG is the formal
index of the UV divergence. Superficial UV divergence
whose removal requires counterterms, can be present on
those functionsG for which dG is a non-negative integer.

Analysis of the divergences in our model can be au
mented by the following considerations

~i! From the explicit form of the vertex and bare prop
gators it follows thatNu82Nu52N0 for any one-irreducible
correlation function, whereN0>0 is the total number of bare
propagatorŝ uu&0 entering into the function. Therefore, th
differenceNu82Nu is an even non-negative integer for an
nonvanishing function; cf. Refs.@18,41,43#.

~ii ! For any model with the Martin-Siggia-Rose-type a
tion, all the one-irreducible functions withNu850 contain
closed contours of retarded propagators^uu8&0 and vanish;
see, e.g., Refs.@8,24,25#.

~iii ! If for some reason a number of external momen
occurs as an overall factor in all the diagrams of a giv
Green function, the real index of divergencedG8 is smaller
thandG by the corresponding number~the correlation func-
tion requires counterterms only ifdG8 is a non-negative inte-
ger!; see, e.g., Refs.@8,24,25#. In model~2.10!, the derivative
] at the vertexu8@2V(1)1A 0V(2)# can be moved onto the
field u8 using the integration by parts, which decreases
real index of divergence:dG85dG2Nu8 , and the fieldu8 en-
ters the counterterms only in the form of the derivative]u8.

From the dimensions in Table I we finddG5d122Nv
1Nu2(d11)Nu8 and dG85(d12)(12Nu8)1Nu2Nv .
Bearing in mind thatNu8>Nu we conclude that for anyd,
superficial divergences can exist only in the one-irreduci
functions ^u8&1-ir with dG5dG851, ^u8u&1-ir with dG52,
dG851, and^u8uv&1-ir with dG51, dG850. The correspond-
ing counterterms necessarily reduce to the forms]u8 ~which
vanishes identically!, u8]2u, u8V(1), andu8V(2) with V(1,2)

from Eq.~2.2!. The structureu8] tu does not contain a spatia
derivative, whileu8V(3) with Vi

(3)[] i(v ju j ) has the form of
a total derivative and vanishes after the integration overx.

We thus conclude that our model~2.10! is multiplicatively
renormalizable and the corresponding renormalized ac
has the form

SR~F!5u8D fu8/21u8@2] t1kZk]2u2Z1V(1)1Z2AV(2)#

2vDv
21v/2. ~3.1!

Here and belowg, u, k, andA ~without a subscript! denote
the renormalized analogs of the corresponding bare par
eters~with the subscript 0!. The correlation functionDv in
Eq. ~3.1! should be expressed in terms of the renormaliz
parameters andZi5Zi(g,u,A,a,«,h,d) are the renormal-

n
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ization constants. The introduction of the counterterms is
produced by the multiplicative renormalization of the velo
ity field, v→Z1v, and the parametersg0 , u0 , k0, andA0 in
the action functional~2.10!:

k05kZk , u05umhZu , g05gm2«Zg , A05ZAA.

~3.2!

Herem is the reference mass~additional arbitrary paramete
of the renormalized theory! and the renormalization con
stants in Eqs.~3.1! and ~3.2! are related as follows:

Zg5Z1
2Zk

22 , Zu5Zk
21 , ZA5Z2Z1

21 . ~3.3!

The first two relations in Eq.~3.3! result from the absence o
the renormalization of the term withDv in Eq. ~3.1!. No
renormalization of the fieldsu,u8 and the parametersm
;1/L anda is required, i.e.,Zu51 and so on.

We have calculated all the renormalization constants
the one-loop approximation~first order ing). The resulting
expressions are rather cumbersome: they are given by
nite series in the parameteru with the terms containing the
poles in 2«1sh with s51,2, . . . , cf.Refs. @41,43# for the
scalar case. For this reason, below we give them only for
special caseh50 and arbitrary«. It is important here that the
parameter« alone provides the UV regularization for th
theory, so that the constantsZ remain finite ath50. In the
minimal subtraction~MS! scheme they have the form

Z1511
gS̄d

4d~11u!2«
H a1

A~12A!

~d12!
2a

~12A!

~d12! J 1O~g2!,

~3.4a!

Z2511
gS̄d

4d~11u!2«
H a2

~12A!

~d12!
1a

~12A!

A~d12!J 1O~g2!,

~3.4b!

Zk512
gS̄d

4~11u!«
$X1~a21!Y%1O~g2!, ~3.4c!

where

X512
~12A!2

d
2

2

d~u11!
1

2~u12!~12A!2

~u11!d~d12!
,

~3.5a!

Y5
11A2A 2

d
1

~12A!2

d~d12!
2

2

d~u11!
1

2~12A!

d~d12!~u11!
.

~3.5b!

Here and belowS̄d5Sd /(2p)d andSd52pd/2/G(d/2) is the
surface area of the unit sphere ind-dimensional space.

The explicit expressions~3.4! illustrate some genera
properties of the renormalization constantsZ1,2, valid to all
orders ing.

For the magnetic caseA51 we haveZ15Z2 and, there-
fore, ZA51 and the parameterA0 is not renormalized:A0

5A51. This is a consequence of the relation] i@Vi
(1)

2Vi
(2)#50 for vectors~2.2!, which expresses the transve
04630
-
-

n

fi-

e

sality of the vertexu i8@Vi
(1)2Vi

(2)# with respect to the index
of the fieldu8. The same property holds for all the diagram
of the one-irreducible function̂u8uv&1-ir and, as a result, for
the corresponding counterterm, cf. Refs.@55,56# for the case
of the active magnetic field interacting with the NS veloc
field.

In the rapid-change limit (u→`, g/u25const) we obtain
Z15Z251 due to the fact that all the diagrams of the fun
tion ^u8uv&1-ir contain effectively closed circuits of retarde
propagatorŝ uu8&0 and therefore vanish; it is crucial her
that the correlation function~2.8! is proportional to thed
function in time representation. On the contrary, in the froz
limit ( u→0, g/u5const) the constantsZ1,2 remain non-
trivial.

One also obtainsZ15Z251 for A5a50. In this case, the
derivative ] at the only vertexu i8Vi

(1)[u i8(v])u i can be
moved onto either fieldsu and u8, so that the real index o
divergence takes on the formdG85dG2Nu2Nu8 ~we recall
that dG85dG2Nu8 for general A and a!. This gives dG8
521 for Nu5Nu85Nv51, so that the function̂u8uv&1-ir
is UV finite; cf. Ref.@41# for the scalar case. In other word
the counterterm to the vertex must include two derivativ
~one for the fieldu and one foru8!, which is forbidden by the
dimensionality considerations.

Finally, from Eqs.~3.4! it follows that Z1,251 for A51
anda50. We found no general explanation for this relatio
but checked that it remains true in the two-loop approxim
tion, so that we can only guarantee thatZ1,2511O(g3).

Let W(e0) be some correlation function in the origina
model ~2.10! and WR(e,m) its analog in the renormalized
theory with action~3.1!. Heree0 is the complete set of bar
parameters ande is the set of their renormalized counte
parts. In the following, we shall not be interested in the c
relation functions involving the velocity fieldv. Then the
relation S(u,u8,Z2 ,v,e0)5SR(u,u8,v,e,m) for the action
functionals yields W(e0)5WR(e,m) for any correlation
function of the fieldsu8, u; the only difference is in the
choice of variables and in the form of perturbation theory~in
g instead ofg0).

We useD̃m to denote the differential operationm]m for
fixed e0 and operate on both sides of this equation with
This gives the basic RG equation

DRG WR~e,m!50, ~3.6!

whereDRG is the operationD̃m expressed in the renorma
ized variables

DRG[Dm1bg]g1bu]u1bA]A2gkDk . ~3.7!

In Eq. ~3.7!, we have writtenDx[x]x for any variablex, the
RG functions~theb functions and the anomalous dimensio
g! are defined as

g i[D̃m ln Zi ~3.8!

for any renormalization constantZi and
6-8
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TURBULENCE WITH PRESSURE: ANOMALOUS . . . PHYSICAL REVIEW E 68, 046306 ~2003!
bg[D̃mg52g@2«1gk2g1#,

bu[D̃mu5u@2h1gk#,

bA[D̃mA5A@g12g2#. ~3.9!

The relations betweenb and g in Eq. ~3.9! result from the
definitions and relations~3.3!.

For the basis anomalous dimensions from the definiti
and expressions~3.4! in the one-loop approximation we ob
tain

g15
2gS̄d

2d~11u!2 H a1
A~12A!

~d12!
2a

~12A!

~d12! J 1O~g2!,

~3.10a!

g25
2gS̄d

2d~11u!2 H a2
~12A!

~d12!
1a

~12A!

A~d12!J 1O~g2!,

~3.10b!

gk5
gS̄d

2~11u!
$X1~a21!Y%1O~g2!, ~3.10c!

with X andY from Eq. ~3.5!. It is also worth noting that the
knowledge of the constantsZ at h50 is in fact sufficient to
calculate theb functions ~3.9! for all h, « because the
anomalous dimensions~3.10! are independent ofh, «, at
least in the one-loop approximation. This fact essentia
simplified the two-loop calculation of the anomalous dime
sions for the scalar case performed in Ref.@42#.

IV. FIXED POINTS AND SCALING REGIMES

It is well known that possible scaling regimes of a ren
malizable model are associated with IR attractive fix
points of the corresponding RG equation; see, e.g., Ref.@8#.
Roughly speaking, in solving the RG equation all the ren
malized coupling constantsgi ~that is, all dimensionless pa
rameters of the model! are replaced by the correspondin
invariant chargesḡi(s), where s[k/m in the momentum
representation ors[1/mr in the coordinate representatio
The invariant charges are determined as the solutions o
following Cauchy problem

Dsḡi~s!5b i„$ḡ j~s!%…, ḡi~1!5gi for all i . ~4.1!

Here ḡi(s) is the full set of the invariant charges andb i

[D̃mgi are the correspondingb functions. In the IR
asymptotic range (s→0) the invariant charges tend to I
attractive fixed points of system~4.1!. The coordinatesgi* of
the fixed points are found from the equationsb i($gj* %)50
for all i. The type of a fixed point is determined by the mat
V5$V i j 5]b i /]gj%: for an IR attractive fixed point the ma
trix V is positive definite, i.e., the real parts of all its eige
values are positive.

In our case, the coordinatesg* ,u* ,A* of the fixed points
are found from the equations

bg~g* ,u* ,A* !5bu~g* ,u* ,A* !5bA~g* ,u* ,A* !50,
~4.2!
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with the b functions given in Eq.~3.9!. The coordinates of
the fixed points and the elements of the corresponding
trices V depend on the remaining free parameters:«, h, d,
anda.1

Below we list all possible fixed points of system~4.2!,
giving their coordinates in the one-loop approximation, th
is, to first order in« and h. We shall also present the in
equalities that determine the regions~in the space of param
eters«, h, d, anda! where those points are IR attractive.
should also be kept in mind that admissible fixed poi
should satisfy the relationsg* >0, u* >0, which follow
from the physical meaning of these parameters (g is the am-
plitude of a pair correlation function andu is the ratio of the
diffusivity and viscosity coefficients!.

First of all, the trivial fixed point

g* 5u* 50, A* arbitrary ~4.3a!

should be mentioned. The corresponding matrixV is diago-
nal with the diagonal elements~eigenvalues!

l150, l2522«, l352h, ~4.3b!

so that point~4.3a! is IR attractive for«,0, h,0. Since for
g5u50 all the threeb functions ~3.9! vanish simulta-
neously, the value ofA at this fixed point remains arbitrary
This degeneracy is reflected in the vanishing ofl1.

We shall discuss the physical meaning of point~4.3a! later
and now turn to nontrivial fixed points. Their analysis
simplified by the observation that the one-loop functionbA
factorizes into a part that depends only onA and a part that
depends only ong,u:

bA5
gS̄d

2d~11u!2
~A 221!~A2a!1O~g2!, ~4.4!

see Eqs.~3.9! and~3.10!. Thus all possible values ofA* are
found from the equationbA50 regardless of the values o
the other couplings, providedg is nonzero andg,u are not
infinite:

A* 521,1,a. ~4.5!

Furthermore, the elements]bA /]guA5A
*
5]bA /]uuA5A

*
50 of the matrixV vanish for these values ofA* regardless
of the values ofg,u. Thus the matrixV is block triangular
and one of its eigenvalues coincides with the diagonal e
ment VA[]bA /]A. Its sign is completely determined b
the value ofA* , so that we can check a necessary condit
VA.0 for a fixed point to be IR attractive regardless of t
values ofg,u: it is satisfied forA* 521 for all a, for A*
51 if a,1, and forA* 5a if a.1. This is easy to under

1Formally, a can be treated as the fourth coupling constant. T

correspondingb function ba[D̃ma vanishes identically owing to
the fact thata is not renormalized. Therefore, the equationba50
gives no additional constraint on the values of the coupling c
stants at a fixed point.
6-9
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stand geometrically:VA.0 for the leftmost and rightmos
points andVA,0 for the point lying in between them.

Therefore, for anya the conditionVA.0 is simulta-
neously satisfied by two fixed points:A* 521 and A*
5max$1, a%. Factorization of function~4.4! allows one to
analyze the solution of Eq.~4.1! for the invariant charge
Ā(s) independent of the remaining equations for the ot
invariant charges:Ā(s) will be attracted by the leftmos
fixed point A* 521 if and only if the initial conditionA
5Ā(1) lies to the left of the unstable fixed point,A
,min$1,a%, and by the rightmost pointA* 5max$1,a% if
and only if A.min$1,a%.

Besides the finite values~4.5!, there is one more possibil
ity that formally corresponds toA* 5`. More accurately it
can be revealed by the change of variablesa[1/A, y
[gA 2; then a* 50 andy* is finite. It describes the situa
tion when action~2.10! contains the only vertexu8V(2).
Since in this vertex the derivative can be moved onto eit
of the fieldsu8 andv @see Eq.~2.2!#, such a model is multi-
plicatively renormalizable~the vertexu8V(1) is not generated
by the renormalization! and Z251 identically. Thus the re-
sult a* 50 is exact to all orders. However, one can eas
check that the eigenvalue of the matrixV, equal to the di-
agonal elementVa[]ba /]a, is always negative, so that th
point cannot be IR attractive. We shall not discuss it in w
follows.

To conclude the analysis of the equationbA50, it re-
mains to note that the resultA* 51 in Eq. ~4.5! is exact~a
consequence of the relationZ15Z2 for A51, see Sec. III!,
while the other two can have corrections of order«;h and
higher. The only exception is the resultA* 50 for a50,
which is also exact due to the relationZ151 for a50.

Substituting values~4.5! into the functionsbg , bu from
Eq. ~3.9! and solving the equationsbg5bu50 gives the
values of the remaining coordinatesg* and u* . For each
value ofA* , there are two solutions. For the first of them
u* 50. This result is exact to all orders of the« expansion
since the functionbu for u50 vanishes identically, see Eq
~3.9!. Substituting the valueu* 50 to bg and solving the
equationbg50 givesg* . We shall denote such fixed poin
by Q, as they correspond to the case of ‘‘quenched disord
see the comments to Eq.~2.9!. For the second variant,g*
andu* are both nonzero; we shall denote such fixed po
by F ~‘‘finite’’ correlation time of the velocity field!.

Thus we arrive at six nontrivial fixed pointsQ2,Q1,Qa,
F2,F1,Fa, where the superscripts correspond to the val
of A* in Eq. ~4.5!. Below we give the coordinates of thes
04630
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points in the one-loop approximation, the eigenvaluesl1,2,3
of the matrixV (l1 always corresponds to the diagonal e
ement]bA /]A), and the inequalities that determine the r
gions where the points are admissible~IR attractive and sat-
isfy g* .0, u* >0):

Q1: g* 5
2d«

d21
, u* 50, A* 51 ~4.6a!

with the eigenvalues

l15
2«~12a!

~d21!~d12!
,

l252«,

l35
~d212a!«2h~d21!

d21
, ~4.6b!

admissible for

a,1, ~d212a!«.~d21!h. ~4.6c!

Q2: g* 5
2d~d12!«

S̄d~d22a!~d21!
, u* 50, A* 521,

~4.7a!

with the eigenvalues

l15
2«~a11!

~d21!~d22a!
,

l252«,

l35
@221d2d21a~3d22!#«2~2a2d!~d21!h

~2a2d!~d21!
,

~4.7b!

admissible for

«.0, a,d/2,

~d22a!~d21!h,@d22d122a~3d22!#«.
~4.7c!

Qa: g* 5
2d~d12!«

d2231a~d11!~11a2a2!
,

u* 50, A* 5a ~4.8a!

with the eigenvalues
l15
~a221!«

d21a~d11!~11a2a2!23
,

l252«,

l35
@232a1d21a2~11d!~12a!#«2@231d21a~11d!~11a2a2!#h

d21a~11d!~11a2a2!23
, ~4.8b!
6-10
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admissible for

«.0, a.1, d2231a~d11!~11a2a2!.0,

h,
d2232a1a2~d11!~12a!

d2231a~d11!~11a2a2!
«. ~4.8c!

F1: g* 5
2ad~h22«!2

~a1d21!2~«2h!
,

u* 5
~11a2d!«1~d21!h

~d1a21!~«2h!
, A* 51 ~4.9a!

with the eigenvalues

l15
2~12a!~«2h!

a~d12!
,

l25
W12AW1

22W2

2a~2«2h!
,

l35
W11AW1

22W2

2a~2«2h!
, ~4.9b!

where

W15~216a22d!«215~d212a!«h23~d21!h2,

W258a~2«2h!@~11a2d!«1~d21!h#

3~2«223«h1h2!, ~4.9c!

admissible for
04630
«.0, h.0, a,1, «.h.
d2a21

d21
«,

~216a22d!«215~d212a!«h23~d21!h2.0.

~4.9d!

F2: g* 5
2d~21d!~ad22!~h22«!2

~12a1d!2~d22!2~«2h!
,

u* 5
@21a~223d!2d1d2#«1~2a2d!~d21!h

~a2d21!~d22!~«2h!
,

A* 521 ~4.10a!

with the eigenvalues

l15
2~11a!~«2h!

221ad
,

l25
W12AW1

22W2

2~221ad!~2«2h!
,

l35
W11AW1

22W2

2~221ad!~2«2h!
, ~4.10b!

where

W152@261d2d21a~2215d!#«215@21a~223d!

2d1d2#«h13~2a2d!~211d!h2,

W258~221ad!~2«2h!2~«2h!3$@221d2d2

1a~2213d!#«2~2a2d!~211d!h%, ~4.10c!

admissible for
«.h, 2/d,a,~d11!, 2«.h, W1.0,

@21a~223d!1d~d21!#«,~d21!~d22a!h. ~4.10d!

Fa: g* 5
2ad~21d!2~h22«!2

@d2231a2~11d!~12a!1a~2d13!#2~«2h!
,

A* 5a,

u* 5
@31a2d22a2~11d!~12a!#«1@d2231a~11d!~11a2a2!#h

@d2231a2~11d!~12a!1a~2d13!#~«2h!
~4.11a!
6-11
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with the eigenvalues

l15
~a221!~«2h!

a~21d!
,

l25
W12AW1

22W2

2a~21d!~2«2h!
, ~4.11b!

l35
W11AW1

22W2

2a~21d!~2«2h!
,

where

W152@32d22a2~11d!1a3~11d!1a~512d!#«2

25@31a2d22a2~11d!1a3~11d!#«h

13@32d22a~11d!~11a2a2!#h2,

W258a~21d!~2«2h!2~«2h!

3@~31a2d22a2~11d!

3~12a!#«1@231d21a~11d!~11a2a2!h#,

~4.11c!

admissible for

a.1, «.h, 2«.h, W1.0,

@d2231a2~11d!~12a!1a~2d13!#.0,

@31a2d22a2~11d!~12a!#«

1@d2231a~11d!~11a2a2!#h.0. ~4.11d!

However, the above list is not exhaustive: besides
fixed points with noninfinite values ofg* andu* , there are
points for which these parameters tend to infinity. They c
be revealed by the change of variablesx[g/u, w[1/u. The
correspondingb functions are obtained by the chain rule:

bx[D̃mx5~1/u!bg2~g/u2!bu , bw[D̃mw52~1/u2!bu ,

~4.12!

with bg,u from Eq. ~3.9! and the anomalous dimension
~3.10! expressed in the variablesx, w. Solving the equations
bx5bw5bA50 gives three fixed points with finite value
of x* ,w* , which simply express the pointsF6, a in the new
variables. Besides them, there are two fixed points withw*
50, left out in the analysis performed in terms ofg, u. It is
clear from Eq.~2.8! that the choicew50 corresponds to the
rapid-change limit of our model. The dimensiongk from Eq.
~3.10! remains finite forw50, while g1 and g2 vanish. In
fact, they vanish to all orders of the perturbation theory
x}g owing to the exact relationZ15Z251 that holds in the
limit ~2.8!; see the discussion in Sec. III. As a result, t
functionbA vanishes identically forw50 and the coordinate
A* remains arbitrary at such fixed points; see the rem
below Eq.~4.3a!.
04630
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There is a trivial fixed point

x* 5w* 50, A* arbitrary ~4.13a!

with the eigenvalues

l150, l25h, l35h22«, ~4.13b!

and a nontrivial fixed point, which we shall denote byRA in
what follows,

RA:x*

5
2d~d12!~2«2h!

A~11a!d1d21a~31d!2A 2~211a1ad!23
,

w* 50, A* arbitrary ~4.14a!

with the eigenvalues

l150, l2522~«2h!, l352«2h, ~4.14b!

admissible for

h.«.h/2,

A~11a!d1d21a~31d!2A 2~211a1ad!23.0.
~4.14c!

The notationRA implies that this point corresponds to th
‘‘rapid-change’’ regime and thatA* 5A remains a free pa-
rameter.

Triviality of points ~4.3a! and~4.13a! implies the absence
of anomalous scaling; they correspond to diffusive-type
gimes, for which the convection@that is, the nonlinearity in
Eq. ~2.1!# can be treated within ordinary perturbation theo
and the standard methods of the homogenization theory
ply. More detailed discussion of such fixed points~in particu-
lar, the difference between the ‘‘quenched’’ and rapid-chan
trivial fixed points! can be found in Ref.@41# for the example
of the passive scalar field, advected by the velocity ensem
~2.5!.

On the contrary, the nontrivial fixed pointsQ6,a, F6,a,
andRA describe nondiffusive asymptotic regimes, in whi
the competition of the diffusive and convective terms in E
~2.1! produces anomalous scaling behavior. The correspo
ing anomalous exponents will be presented in the follow
section, and now we shall discuss the interplay between
possible scaling regimes. Seven nontrivial IR attractive fix
points correspond to seven possible scaling regimes; o
one of them can be realized when the values of all para
etersa, «, h, d, and A are given, regardless of the value
of the amplitudesg and u ~see below!. In this sense, the
asymptotic behavior in our model is universal, and~as we
shall see! the anomalous exponents depend only on
values of the exponents« and h in the velocity correlation
function and on the parametersa ~for all regimes! and A
~for RA), but they do not depend on the coupling constantg
andu.

Indeed, let us fix the value ofA. Then the solution of
the RG equation~3.6! can be attracted by either of the fo
lowing three sets: by the set$F2,Q2,RA% if A,min$1, a%,
by the set$F1,Q1,RA% if a,1 andA.a, and by the set
6-12
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$Fa,Qa,RA% if a.1 andA.1. @In all these cases, the valu
of A* for the fixed pointRA in Eq. ~4.14a! simply equals to
A#.

For any of these three situations, only one fixed point
the list $F,Q,R% can be IR attractive for given« and h.
Indeed, the analysis of the inequalities that determine
admissibility regions for these points shows that these
gions adjoin each other without overlaps or gaps. The co
mon boundary of the admissibility regions for the pointsF
andR is «5h @one of the admissibility conditions forRA is
«,h, see Eq.~4.14c!, while one of the admissibility condi
tions for any of the pointsF6 a is «.h, see Eqs.~4.9d!,
~4.10d!, and ~4.11d!#. The common boundary of the admi
sibility regions for the pointsF and Q is (d212a)«5(d
21)h for the pairQ1, F1 @see Eqs.~4.6c! and ~4.9d!#,

@d2231a~d11!~11a2a2!#h

5@d2232a1a2~d11!~12a!#«

for the pairQ2, F2 @see Eqs.~4.7c! and ~4.10d!# and @d2

231a2(11d)(12a)1a(2d13)#50 for the pairFa, Qa

@see Eqs.~4.8c! and ~4.11d!#.
Therefore, for any given set of parametersa, «, h, d, and

A, the RG trajectory can be attracted by the only one p
sible nontrivial fixed point, regardless of the values of t
parametersg,u @that is, the initial data for the Cauchy prob
lem ~4.1!#. If the trajectory is attracted by a trivial point, th
model will show diffusive-type behavior. Finally, if there
no IR attractive fixed point for the given set of paramete
no definitive conclusion can be made about the asympt
behavior of the model within the framework of the« expan-
sion. In particular, if the trajectory comes to a region whe
the parametersg,u are negative, one can think that the stea
state of our system becomes unstable~by analogy with the
RG theory of critical phenomena, where such behavio
usually interpreted as a first-order phase transition!.

The admissibility regions in the«-h plane are shown in
Fig. 1 for a number of values of the parametersa andd. In
the one-loop approximation, their boundaries are alw
given by straight rays starting at the origin«-h. Some of
them, however, can be affected by the higher-order cor
tions, so that the gaps or overlaps of different regions
appear in the two-loop approximation~Fig. 2!.

It is interesting to note that the scaling regimes that a
as solutions of the RG equations for the general model
several cases correspond to interesting physical situat
~Fig. 3!. In particular, the regimes governed by the poin
Q6,a correspond to the case of time-independent~or frozen!
velocity field, while F6,a correspond to the rapid-chang
limit of the general model~2.5!.

To avoid possible misunderstandings we emphasize
the limits u0→0 or g0→`, u0→` are not supposed to b
performed in the original correlation function~2.5!; the pa-
rametersg0 ,u0 ~and henceg,u) are fixed at some finite val
ues. The behavior specific to models~2.8! and ~2.9! arises
asymptotically as a result of the solution of the RG eq
tions, when the RG flow approaches the corresponding fi
point. This shows that in the regimes governed by the po
04630
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FIG. 1. Regions of infrared stablity of the three fixed poin
~4.6a!, ~4.7a!, and~4.8a! corresponding to quenched disorder for
representative set of values of the space dimensiond and the pa-
rametera of the relative strength of the longitudinal part in th
correlation function of the velocity field. The region of stabilit
for any indicated values ofd and a lies between the dashed ra
~«50, h<0! and the correspondingly marked dash-dotted ray in
upper half of theh-« plane. Note different scales on the coordina
axes.
6-13



s
e-
er
e
th
el
tio

ne
e
th
en

th
e
th

ec

to

et

o
o

to
ee

st

n

o
pa

d.

of
set

d

y
nate
f the

ANTONOV et al. PHYSICAL REVIEW E 68, 046306 ~2003!
Q6,a, the temporal fluctuations of the velocity field are a
ymptotically irrelevant in determining the inertial-range b
havior of the passive field, which is then completely det
mined by the equal-time velocity statistics. In the regim
governed byRA, spatial and temporal fluctuations are bo
relevant, but the effective correlation time of the passive fi
becomes so large under renormalization that the correla
time of the velocity can be completely neglected~Fig. 4!.
The inertial-range behavior of the passive field is determi
solely by thev50 mode of the velocity field; this is the cas
of the rapid-change model. In particular, this means that
coordinates of the fixed points and the anomalous expon
in such regimes must depend on the only exponentz[2«2h
or « that survives in the limit in question, and coincide wi
the corresponding dimensions obtained directly for mod
~2.8! or ~2.9!. This is indeed the case, as one can see from
explicit expressions given above and in the following s
tion.

As regards the value of the amplitude factorA in Eq.
~2.1!, it can remain an arbitrary parameter~for RA), or can
be attracted by one of the fixed pointsA* 561, or a ~for Q
or F); see Eq.~4.5!. Again, these possibilities correspond
physical situations interesting as such. The caseA* 51 cor-
responds to the behavior characteristic of the magn
model, where the pressure vanishes due to relation~2.4! and
Eq. ~2.1! becomes local. Therefore, the infrared behavior
the nonlocal model can be described by the same fixed p
~or universality class! as that of the local~magnetic! model;
the nonlocal pressure term does not affect the asymp
properties of the passive field. The general model ind
becomes a turbulence without pressure. The caseA* 521
corresponds to the linearized NS equation with a given
tistics of the background field~we recall, however, that this
value ofA can be affected by the higher-order correctio

FIG. 2. Regions of infrared stability of the fixed point~4.9a!
with a finite correlation time in the asymptotic regime. Basins
attraction are shown for a representative set of values of the s
dimensiond and the parametera of the relative contribution of the
longitudinal part in the correlation function of the velocity fiel
The region of stability for any indicated values ofd and a lies
between the dashed ray~«5h, h>0! and the correspondingly
marked dash-dotted ray in the upper half of theh,« plane. Note
different scales on the coordinate axes.
*
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FIG. 3. Regions of infrared stability of the fixed point~4.10a!
with a finite correlation time in the asymptotic regime. Basins
attraction of the three fixed points are shown for a representative
of the longitudinal parametera in space dimensions two, three, an
four. The region of stability for any indicated value ofa lies from
the dashed ray~«5h, h>0! to the left up to the correspondingl
marked dash-dotted ray. Note different scales on the coordi
axes. Contrary to the quenched-disorder case, negative values o
correlation falloff parameter« are ~formally! allowed.
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FIG. 4. Regions of infrared stability of the fixed point~4.11a!
with a finite correlation time in the asymptotic regime. Basins
attraction of the three fixed points are shown for a representative
of the longitudinal parametera in space dimensions two, three, an
four. The region of stability for any indicated value ofa lies from
the dashed ray («5h, h>0) to the left up to the correspondingl
marked dash-dotted ray. Note different scales on the coordi
axes. Negative values of« appear here as well as for the fixed poi
~4.11a!.
04630
in « andh). Finally, the caseA* 50, a50 corresponds the
model, which~in its rapid-change variant! was introduced
independently in a number of studies as an example o
linear system with pressure@37,53#, a model with nontrivial
mixing of composite operators@36,37# or a model which,
with a proper choice of the forcing, can reproduce t
anomalous exponents of the NS velocity field@54#.

It is worth noting that foraÞ0, the model withA050 is
not renormalizable, as follows from the analysis given
Sec. III. That is, the second nonlinear termVi

(2) will be gen-
erated by the renormalization procedure, even if it was
sent in the original equation~2.1!. Of course, this fact does
not mean that the model withA050 andaÞ0 is inconsis-
tent; it rather means that its IR behavior is described by
of the fixed point withA* Þ0.

V. CRITICAL SCALING: CRITICAL DIMENSIONS
OF COMPOSITE OPERATORS

Consider for definiteness some equal-time two-po
quantityF(r ) that depends on a single distance parameter,
for example, the pair correlation function of the prima
fields u,u8 or some composite operators. We assume t
F(r ) is multiplicatively renormalizable, i.e.,F5ZFFR with
certain renormalization constantZF . Then the function
FR(r ) satisfies the RG equation of the form@DRG
1gF# F(r )50 with the operatorDRG from Eq. ~3.7! and
gF[D̃m ln ZF , cf. Eq. ~3.8!. The functionsF and FR are
equally suitable for studying the asymptotic behavior: t
difference is in the normalization, choice of parameters~bare
or renormalized!, and the form of the perturbation theory~in
g0 or in g). The solution of the RG equation can be writte
in terms of the invariant variables introduced in Eq.~4.1!.
The analysis shows that in the IR asymptotic region, defin
by the inequalityLr @1 with L from Eq.~2.7! and any fixed
mr with m51/L from Eq. ~2.3!, the invariant charges ap
proach one of the IR attractive fixed points~the choice of the
appropriate fixed point is discussed in the preceding secti!,
and, as a result, the functionF(r ) takes on the self-similar
form

F~r !.k
0
dF

v

LdF~Lr !2DFj~mr!, ~5.1!

wheredF
v and dF are the frequency and total canonical d

mensions ofF, respectively~see Sec. III and Table I!, andj
is some function whose explicit form is not determined
the RG equation itself. The critical dimensionDF of the
quantityF is given by the expression

DF5dF
k 1DvdF

v1gF* 5dF2gk* dF
v1gF* , ~5.2!

wheregF* denotes the value of the anomalous dimensiongF

at the fixed point in question, andDv522gk* with gk from
Eq. ~3.7! is the critical dimension of frequency.

Each nontrivial fixed pointQ6,a, F6,a, andRA from Sec.
IV corresponds to the scaling representation of the form~5.1!
with its own set of critical dimensionsDF for all quantitiesF
andDv . In general, these dimensions are infinite series i«

f
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te
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and h. For the rapid-change regime~that is, for the point
RA) they depend on the only exponentz[2«2h from ~2.8!,
while for the regimes with quenched disorder~that is, for the
points Q6,a) they depend on the only exponent« that sur-
vives in limit ~2.9!. For the fixed pointRA, the equationbx

50 determines the values ofgk* 5z andDv522z exactly,
that is, without corrections of orderz2 and higher. This fol-
lows from the explicit expressions~3.9! and ~4.12! and the
vanishing of the anomalous dimensionsg1,2; see the discus
e
.
e
e

ub

ct

V
c
n

04630
sion below Eq.~4.12!. For the fixed pointsF6,a with u*
Þ0 the equationbu50 leads to the exact resultgk* 5h; see
Eq. ~3.9!. For the fixed pointQa with A* 5a50, the exact
resultgk* 5« follows from the equationbg50 and vanishing
of g1; see the discussion in Sec. III. For the other regim
the first-order expressions forgk* are directly obtained by
substituting the coordinates of the fixed points~4.6a!, ~4.7a!,
and ~4.8a! into the one-loop expression~3.10c! for gk . The
results can be summarized as follows:
gk* 5

¦

z[2«2h ~exact! for RA

h ~exact! for F6,a

«
~d212a!

~d21!
for Q1

«
~d22d23da12a12!

~d21!~d22a!
for Q2

«
~d22d12!

d~d21!
for Q2 and a50

«
~d22da31da22a31a22a23!

~d22da31da21da2a31a21a23!
for Qa

« ~exact! for Qa and a50.

~5.3!
.

e
odel

s
:

Then the dimensionsDF , e.g., of the primary fieldsu,u8 are
obtained from Eq.~5.2! and the data from Table I,

Du5211gk* /2, Du85d2gk* /2, ~5.4!

and the dimensions of their correlation functions are giv
by simple sums over the fields entering into the function

In the following, the crucial role will be played by th
critical dimensionsD@n,l # associated with the irreducibl
tensor composite fields~‘‘local composite operators’’ in the
field theoretic terminology! built solely of the fieldsu at a
single space time pointx5$t,x%. They have the form

F@n,l #[u i 1
~x!•••u i l

~x!@u i~x!u i~x!#p1•••, ~5.5!

where l<n is the number of the free vector indices andn
5 l 12p is the total number of the fieldsu entering into the
operator; the vector indices and the argumentx of the symbol
F@n,l # are omitted. The dots stand for the appropriate s
tractions involving the Kroneckerd symbols, which ensure
that the resulting expressions are traceless with respe
contraction of any given pair of indices, for example,u iu j
2d i j ukuk /d, u iu juk2(d i j uk1d iku j1d jku i)u

2/(d12) and
so on. We also note that the numbersn andl are even or odd
simultaneously.

Owing to the coincidence of the arguments, additional U
divergences arise in the correlation functions involving su
operators. They are eliminated by means of the additio
renormalization procedure, which gives rise to new@inde-
n

-

to

h
al

pendent ofZ1,2,k from Eq. ~3.1!# renormalization constants
The analysis similar to that given in Refs.@41,43# for the
scalar and in@33# for the magnetic model shows that, in th
case at hand, these constants can be calculated in the m
without forcing@the bare propagator^u iu j&0 from Eq. ~2.11!
does not enter into the corresponding Feynman diagram#.
Then operators~5.5! appear multiplicatively renormalizable
F@n,l #5Z@n,l #FR@n,l #.

We have calculated all the constantsZ@n,l # in the
one-loop approximation~first order ing) in the MS scheme
for the special caseh50 and arbitrary«, which is sufficient
to find the corresponding anomalous dimensionsg@n,l #
5D̃m ln Z @n,l#; cf. the discussion above Eq.~3.4!. We omit
the calculation~which is very similar to that performed in
Refs.@41,43,33# for the scalar and magnetic cases! and give
only the final result:

Z@n,l #511
gS̄d

8« d~d12!~u11!
@A 2Q11aQ2#, ~5.6!

where

Q15n~d1n!~d21!2 l ~ l 1d22!~d11!,

Q25n~dn1n2d!~d21!2 l ~ l 1d22!. ~5.7!

For the anomalous dimension we thus obtain
6-16
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g@n,l #5
2gS̄d

4d~d12!~u11!
@A 2Q11aQ2#. ~5.8!

According to Eq.~5.2!, the critical dimensions of operator
~5.5! are given by

D@n,l #5nDu1g* @n,l #, ~5.9!

with Du from Eq. ~5.4! and g* @n,l # is the value of the
e

04630
anomalous dimension~5.8! at one of the nontrivial fixed
points ~4.6a!,~4.7a!,~4.8a!,~4.9a!,~4.10a!,~4.11a!,~4.14a!.
Note that owing to the renormalization, the critical dime
sions of operators~5.5! differ from the naive sum of the
dimensions of the fieldsu that constitute the operator. Th
exception is provided by the caseA* 5a50, whenD@n,l #
5nDu exactly~the proof is similar to that given, e.g., in Re
@18# for the scalar case!.

The results for the anomalous dimensionsg* @n,l # can be
summarized as follows:
g* @n,l #52~2«2h!@A
*
2 Q11aQ2#/23

¦

1

~d12!~d211a!
for F1

1

~d22!~d112a!
for F2

1

~d22da31da212da2a31a213a23!
for Fa

1

~d223!
for Fa and a50

~5.10!

for the regimes with finite correlation time,

g* @n,l #52«@A
*
2 Q11aQ2#/23

¦

1

~d12!~d21!
for Q1

1

~d21!~d22a!
for Q2

1

~d22da31da21da2a31a21a23!
for Qa

1

~d223!
for Qa and a50

~5.11!

for the regimes with quenched disorder, and

g* @n,l #52~2«2h!@A 2Q11aQ2#/235
1

~d21A 22aA 22adA 21adA1dA1da13a23!
for RA,

1

~d21A 21dA23!
for RA and a50

~5.12!
s

for the regimes with zero correlation time. We recall thatA*takes on the values 1,21, anda for the fixed pointsF and
Q labeled by the superscripts1, 2, and a, respectively,
while for the rapid-change regimeA* 5A remains an arbi-
trary parameter. We also note that dimensions~5.11! depend
on the only exponent« that survives in limit~2.9!, while
dimensions~5.12! depend on the only exponentz52«2h
that survives in limit~2.8!. Exponents~5.10! also depend
only on z, which seems to be an artifact of the first-ord
approximation. We also note that exponents~5.12! were de-
r

rived earlier directly for the rapid-change model~2.8! for
some special cases:A51 anda50 in Ref. @33#, A51 and
arbitrarya>0 in Ref. @34# and arbitraryA anda50 in Ref.
@35#.

From Eqs.~5.3!, ~5.4!, and~5.9!–~5.12! it follows that

D@n,l #52n1O~«!. ~5.13!

Thus for all nontrivial fixed points, at least for small value
6-17
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of «;h, one hasD@n,l #,D@k, j # if n.k regardless of the
relation betweenl and j. For a fixed value ofn one has

D@n,l #.D@n j # and g@n,l #.g@n j # if l . j ,
~5.14!

as one can easily see from the original expression~5.8! for
the anomalous dimensiong@n,l #, properties of polynomials
~5.7! and the fact that the combinationg/(u11)5x/(w
11) that enters into Eq.~5.8! is positive definite for all
nontrivial fixed points.@We recall that the parametersx, w
were introduced above Eq.~4.12! for the proper description
of the rapid-change regimes.# Thus for fixedn, the dimension
D@n,l # decreases monotonically withl and reaches its mini
mum for the minimal possible value ofl, that is,l 50 if n is
even andl 51 if n is odd.

The hierarchy relations~5.13! and ~5.14! will be impor-
tant in the discussion of the inertial-range behavior of va
ous correlation functions, in particular, in the issue of t
large-scale anisotropy persistence; see Sec. VI. Similar
equalities were established earlier for the case of the pas
scalar field, advected by the velocity ensemble~2.5! and
~2.6! in Refs.@41,43#, and for the magnetic field advected b
the Kraichnan ensemble~2.8! in Ref. @39,33#.

It also follows from Eq.~5.13! that the critical dimensions
D@n,l # are negativeand that the spectrum of their dimen
sions is not bounded from below; these properties, typica
the models of turbulence, will also be important in the fo
lowing.

If the random forcef is introduced in Eq.~2.1!, none of
formulas ~5.6!–~5.12! change, because the bare correla
^uu&0 from Eq. ~2.11!, which becomes nonzero, does n
enter the relevant diagrams. However, operators~5.5! are no
longer renormalized multiplicatively: the operatorF@k, j #
can admix in renormalization to the operatorF@n,l # if and
only if, k, l . In general,j Þ l , but if correlator~2.3! is iso-
tropic, only operators withj 5 l can mix in renormalization.
The admixture of operators withk. l is impossible due to
the absence of appropriate diagrams; this is a consequen
the linearity of the original equation~2.1! in u and f. The
admixture of operators withk5n and j Þ l is also impos-
sible, because the corresponding diagrams do not involve
correlator^uu&0 and therefore do not ‘‘feel’’ the violation o
the rotational symmetry caused by function~2.3!.

As a result of the mixing, the operatorF@n,l # becomes a
finite sum of contributions with definite critical dimension
D@n,l # and D@k, j # with k,n and, in general, all possibl
values ofj allowed for a givenk. However, due to relation
~5.13!, the leading term is still given by the original contr
bution with the dimensionD@n,l #, while the new contribu-
tions with k,n give only corrections that vanish in the I
rangeLr @1 in expressions such as~5.1!. In what follows,
we shall be interested only in the leading terms of and t
we can ignore the mixing and treat the operatorF@n,l # as if
it has the definite critical dimensionD@n,l #.
04630
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VI. OPERATOR PRODUCT EXPANSION
AND THE ANOMALOUS SCALING

Representation~5.1! for any scaling functionj(mr) de-
scribes the behavior of the correlation functionF(r ) for
Lr @1 and any fixed value ofmr. The inertial range corre-
sponds to the additional condition thatmr!1. The form of
the functionj(mr) is not determined by the RG equation
themselves; in the theory of critical phenomena, its behav
for mr→0 is studied using the well-known Wilson operato
product expansion~OPE!; see, e.g., Ref.@7#. This technique
is also applicable in the theory of turbulence; see, e.g., R
@23–25#.

According to the OPE, the equal-time produ
F1(x)F2(x8) of two renormalized composite operators atx
[(x1x8)/25const andr[x2x8→0 can be represented i
the form

F1~x!F2~x8!5(
F

CF~r !F~ t,x!, ~6.1!

where the functionsCF are the Wilson coefficients regular i
m2 and F are, in general, all possible renormalized loc
composite operators allowed by symmetry; more precis
the operators entering into the OPE are those which ap
in the corresponding Taylor expansions, and also all poss
operators that admix to them in renormalization. If these
erators have additional vector indices, they are contrac
with the corresponding indices of the coefficientsCF .

Without loss of generality it can be assumed that the
pansion in Eq.~6.1! is made in the operators with definit
critical dimensionsDF . The renormalized correlation func
tion ^F1(x)F2(x8)& is obtained by averaging Eq.~6.1! with
the weight expSR with SR from Eq. ~3.1!, the quantitieŝ F&
appear on the right-hand side. Their asymptotic behavior
m→0 is found from the corresponding RG equations and
the form ^F&}mDF.

From the operator-product expansion~6.1! we therefore
find the following expression for the scaling functionj(mr)
in the representation~5.1! for the correlation function
^F1(x)F2(x8)&:

j~mr!5(
F

AF~mr!DF, ~6.2!

where the coefficientsAF(mr) are regular in (mr)2.
The quantities of interest are, in particular, the equal-ti

pair correlation functions of the composite operators~5.5!.
For these, representation~5.1! is valid with the dimensions
dF

v52(n1k)/2, dF52(n1k) and DF5D@n,l #1D@k, j #
with D@n,l # from Eq. ~5.9!:

^F@n,l #~ t,x!F@k, j #~ t,x8!&

5~k0!2(n1k)/2L2(n1k)~Lr !2D[n,l ] 2D[k, j ]j~mr!,

~6.3!

whereLr @1 andj(mr) is the corresponding scaling func
tion.
6-18
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As already said above, the operators entering into
OPE are those which appear in the corresponding Ta
expansions, and also all possible operators that admi
them in renormalization. The leading term of the Taylor e
pansion for function~6.3! is given by thenth rank tensor
F@n1k,l 1 j # from Eq. ~5.5!. Its decomposition in irreduc
ible tensors gives rise to the operatorsF@n1k,p# with all
possible values ofp< l 1 j ; the admixture of junior operator
~see the end of Sec. V! gives rise to all the monomial
F@s,p# with s,n1k and all possiblep allowed for a given
s. Hence, the asymptotic expression for the structure func
j(mr) for mr!1 has the form

j~mr!5 (
s50

n1k

(
p5ps

s

@Asp~mr!D[s,p]1•••#, ~6.4!

with the dimensionsD@k,p# from Eq. ~5.9!. Here and below
ps denotes the minimal possible value ofp for given s, i.e.,
ps50 for k even andps51 for k odd;Asp are some numeri-
cal coefficients dependent on the parameters such as«, d,
and so on. The dots in Eq.~6.4! stand for the contributions
which arise from the composite operators that, in addition
the fieldu, involve the other fieldsu8, v and/or derivatives
],] t .

The leading term of expression~6.4! for mr!1 is deter-
mined, obviously, by the minimal possible dimensionDF
that appear on its right-hand side, provided this minimal
mension exists. In our model, there are infinitely many o
erators with negative critical dimensions, and the spectr
of their dimensions is not bounded from below.~It is possible
to show on general grounds that if a model involves o
negative dimension it necessarily involves infinitely ma
negative dimensions with unbounded spectrum.! If all these
operators appeared on the right-hand side of represent
~6.4!, we would have to sum up their contributions in ord
to find the asymptotic behavior atmr→0. This problem is
indeed encountered for the stochastic NS equation@23#, and
is discussed in Refs.@25,24# in detail.

In our model, however, there is no such problem, at le
for small «. The contributions of the operatorsF@s,p# with
s.n1k ~which would be more important! do not appear in
Eq. ~6.4!, because they are absent in the Taylor expansio
correlator~6.3! and do not admix in renormalization to th
terms of the Taylor expansion; see Sec. V. As already no
there, this is a manifestation of the linearity of the origin
equation~2.1! in u and f. What is more, one can show th
for any operatorF that appear in the OPE@and not only
operators~5.5! built solely of the fieldsu] the number of the
fieldsu cannot exceed the total number of the fieldsu on the
left-hand side; therefore their dimensions cannot appea
Eq. ~6.4!. It then follows that the leading term in Eq.~6.4! is
determined by an operator built solely of the fieldsu and
containing the maximal possible number of the fields, tha
n1k. The operators containing less thann1k fields u give
only corrections, as follows from the hierarchy relatio
~5.13!. The operators involving the fieldsu8, v and/or de-
rivatives also give only corrections, because the canon
dimensions of these additional factors are positive~see Table
04630
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I! and thus increase the total canonical dimension of the
erator in comparison with the corresponding operator b
solely of the fieldsu. Furthermore, from the hierarchy rela
tion ~5.14! it follows that, for the fixed number of the field
u, the minimum of the dimension is achieved for the min
mal number of vector indices, that is, for the scalar opera
F@n1k,0# if the sumn1k is even and the vector operato
F@n1k,1# if the sumn1k is odd.

We therefore conclude that the leading term of the sm
mr behavior of the scaling function~6.4! has the formj
;(mr)D[n1k,l n1k] . Substituting this expression into Eq.~6.3!
gives the desired leading term of the correlation function
two operators~5.5! in the inertial range (Lr @1, mr!1):

^F@n,l #~ t,x!F@k, j #~ t,x8!&

;~k0!2(n1k)/2L2(n1k)~Lr !2D[n,l ] 2D[k, j ]

3~mr!D[n1k,l n1k] , ~6.5!

with the dimensionsD@n,l # from Eq. ~5.9!.

VII. ANOMALOUS SCALING IN ANISOTROPIC
SECTORS: HIERARCHY OF ANISOTROPIC

CONTRIBUTIONS

Without loss of generality, it can always be assumed t
expansion~6.1! is made in irreducible traceless tensor co
posite operators. Then averaging Eq.~6.1! with the weight
expSR automatically produces the decomposition of the c
relation function in irreducible representations of the rotat
group SO(d), similar to that employed, e.g., in Refs.@57–
62# for description of the NS turbulence. This becomes
pecially clear if the left-hand side of Eq.~6.1! involves only
scalar quantities and the anisotropy, introduced by correl
~2.3!, is uniaxial, that is, specified by a single-constant u
vector n. Then the mean valuêF& of a l th rank tensor
operatorF on the right-hand side of Eq.~6.1! is an irreduc-
ible tracelessl th rank tensor built only of the vectorn and
the Kronecker delta symbols. Its vector indices are c
tracted with the indices of the corresponding Wilson coe
cient CF(r ), which gives rise to the Legendre~or Gegen-
bauer for arbitraryd) polynomial of order l. In general,
decomposition in~hyper!spherical harmonics~see, e.g., Ref.
@64# and references therein! or its analogs for tensor quant
ties ~see, e.g., Ref.@65# and the references therein! will be
encountered.

The rankl of the operator can be viewed as the meas
of anisotropy of the corresponding contribution in expans
~6.4!. If the forcing is isotropic, that is, the functionC(r ) in
correlator~2.3! depends only onr 5ur u, only scalar operators
with l 50 have nonvanishing mean values, and only th
dimensions appear on the right-hand side of Eq.~6.4!. In
general, tensor operators withlÞ0 also contribute to Eq,
~6.4!. Owing to relations~5.14!, the leading term of the
asymptotic behavior atmr→0 is still given by the scalar
operator withl 50 ~it has the minimal dimension among th
operators with a fixed number of the fields!. We thus con-
clude that the leading term is given by the same expres
~6.5! for both the isotropic and anisotropic forcing, whi
6-19
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anisotropic contributions withl .0 give only subleading
terms~corrections!. What is more, relations~5.14! show that
these contributions reveal a kind ofhierarchy related to the
degree of anisotropy: the higher is the rank of the opera
the less important is its contribution to the inertial-range
havior.

For the first time, the hierarchy relations for anisotrop
contributions were derived in Ref.@39# for the magnetic
field, passively advected by Kraichnan’s velocity ensem
~2.8!, and in Ref.@41# for the scalar field, advected by th
Gaussian velocity field specified by correlator~2.6! ~in both
cases with generald anda50). In the first of these papers
anomalous exponents were found exactly for the pair co
lation function, while in the second the exponents were
rived only in the one-loop approximation, but for all th
higher-order correlation functions. Later these results w
reproduced in Ref.@40# for the magnetic field~only for d
53, but also including helical contributions! and in Ref.@52#
for the scalar field advected by Kraichnan’s ensemble. G
eralization to the higher-order correlation functions of t
magnetic field was given in Ref.@33# ~for a50), while gen-
eralizations to the case of generala were obtained in Ref.
@34# ~magnetic field and Kraichnan’s ensemble! and in Ref.
@43# @scalar field and ensemble~2.6!#. Generalization to the
general vector model~2.1! and Kraichnan’s ensemble wa
given in Ref.@35#.

So far, analytical results of such kind have been obtai
only for passive fields, advected by the synthetic Gauss
velocity ensembles. However, numerical simulations and
experiments show that the picture outlined above app
rather general, being observed by the passive scalar
advected by the two-dimensional NS field in the inverse
ergy cascade@63# and by the NS velocity field itself@59–62#.
These observations justify and make more precise old p
nomenological ideas about the isotropization of the inert
range turbulence in the presence of a large-scale anisot
Nevertheless, the anisotropy survives in the inertial ra
and reveals itself inodd correlation functions, in disagree
ment with what was expected on the basis of the casc
ideas. We shall return to this important issue in the Conc
sion, and now let us briefly discuss the influence of co
pressibility on the hierarchy of the anomalous exponents

Effects of the compressibility on the anomalous scaling
anisotropic sectors were studied earlier for the scalar@31#
and magnetic@34# fields advected by Kraichnan’s ensemb
~2.8! and for the scalar advected by the velocity ensem
~2.6! with finite correlation time@43#; see also Ref.@66# for a
summary. In all those cases the conclusion was the same
hierarchy expressed by relation~5.14!, which can be rewrit-
ten as

]D@n,p#/]p.0 ~7.1!

remains valid for all values of the compressibility parame
0<a,1`, but it always becomes less pronounced asa
grows,

]2D@n,p#/]p]a,0. ~7.2!
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This means, in particular, that the anisotropic corrections
Eq. ~6.4! become closer to each other and to the leading te
asa grows. Thus the compressibility enhances the pene
tion of the large-scale anisotropy into the inertial range. T
penetration is even more manifest for the odd-order ratios
the correlation functions: the skewness factor grows formr
→0, provideda is large enough, while the growth of th
hyperskewness factor and other higher-order ratios beco
much faster than for the incompressible case; see the dis
sion in Refs.@31,43,34,66#.

No such definite conclusions can be drawn for the gen
vector model. The straightforward analysis of the expli
expressions ~5.10!–~5.12! shows that the derivative
]2D@n,p#/]p]a is negative and, therefore, the behavior d
scribed above takes place only in two regimes described
the fixed pointsF1 ~always! andRA ~only if the relation

231Ad1d22A 3d~d11!1A 4~d11!2

2A 2~d214d12!.0, ~7.3!

which is independent ofa, is satisfied!. For all the other
cases, one finds]2D@n,p#/]p]a.0 and the behavior is op
posite: compressibility suppresses the penetration of
large-scale anisotropy into the inertial range, anisotropic c
tributions become farther from one another and from the i
tropic term.

It is tempting to attribute this ‘‘inverse behavior’’ to th
combined influence of the compressibility and pressure.
deed, the ‘‘normal’’~scalar-like! behavior takes place for th
magnetic regimeF1, for which A* 5A051 and the pres-
sure term~2.4! vanishes. For the rapid-change regimeRA

and reasonable values ofd, relation~7.3! is satisfied only in
the restricted area around the pointA* 51 ~including A*
51, in agreement with the analysis of Ref.@34#!, where the
pressure effects are relatively small. However, the magn
regime in a frozen velocity fieldQ1 demonstrates the in
verse behavior.

The dependence on the parameterA, which controls the
pressure effects, is essentially different from the depende
on a: for the regimes with nonzero~finite or infinite! corre-
lation time, the value of the corresponding invariant varia
can take only three discrete valuesA* 521,1,a. The value
of A* which is realized for a given regime depends ona but
not onA; see Eq.~4.5!. The caseA* 51 corresponds to the
magnetic~pressureless! equations; then the general mod
indeed becomes a turbulence without pressure, despite
presence of the nonlocal pressure term in the original
chastic equation. For the zero-correlated regimeRA, the
anomalous exponents retain a continuous dependence oA;
for the incompressible case (a50) it was discussed in Ref
@35#. The value ofA51, where the pressure effects disa
pear, is not distinguished at all; the derivativ
]2D@n,p#/]p]A at A51 is positive for almost all param
eters~namely, ford.21.3a11.5, the approximate relation
obtained numerically!, but is negative definite, e.g., forA
50.
6-20



sia

h
rm
he
e
rg

e
d

un
th
th
s
nc

s
on
cu
.
el

g

ys

n

sio
pe

to
o

o

-
its
y
y
e
-

t
e
s,
r

b
a
t

the
e
ee

e
he
e

el
as

r

pli-
ds

vior
odel
he
for

l

po-
tion
e
a-

the

tors
ents
-

Eq.
h as
e

o-

lar

ter
op-
the
of

if-
the
ht-

an

an
lso

TURBULENCE WITH PRESSURE: ANOMALOUS . . . PHYSICAL REVIEW E 68, 046306 ~2003!
VIII. CONCLUSION

We have studied a model of a divergence-free~transverse!
vector quantity passively advected by a random Gaus
velocity field with finite~and not small! correlation time. The
model is described by an advection-diffusion equation wit
random large-scale stirring force, nonlocal pressure te
and the most general form of the inertial nonlinearity. T
correlation function of the advecting field mimics som
properties of the real inertial-range turbulence: the ene
spectrum has the formE(k)}k122«, while the correlation
time scales ask221h. An advantage of the model is th
possibility to control the pressure contribution and thus stu
its effects on the inertial-range behavior. Another reason
study the general case is the possibility to describe in a
form way several special cases interesting on their own:
kinematic magnetic model, linearized NS equation, and
special model without the stretching term, which posses
additional symmetry and has a close formal resembla
with the nonlinear NS case.

We have shown that the system exhibits various type
inertial-range asymptotic behavior, characterized by n
trivial anomalous exponents; the latter are analytically cal
lated to first order in«;h, including the anisotropic sectors

The key points of our analysis are the existence of a fi
theoretic formulation of the original stochastic problem~Sec.
II !, multiplicative renormalizability of the correspondin
field theory ~Sec. III!, existence of nontrivial IR attractive
fixed points of the corresponding RG equations in the ph
cal region of the parameters~Sec. IV!, and the possibility to
identify the anomalous exponents with the critical dime
sions of certain composite operators~Secs. V and VI!. This
allows one to construct a systematic perturbation expan
for the exponents; the practical calculations have been
formed to the first nontrivial order in«;h ~one-loop ap-
proximation!.

Existence of explicit one-loop expression allows one
discuss the stability scaling regimes and the universality
the corresponding exponents, that is, their~in!dependence on
the pressure, anisotropy, compressibility, forcing, and so
or, more technically, on the exponents«,h and the ampli-
tudesA0 , g0 , u0, anda in the stochastic equation~2.1! and
correlator~2.6! of the advecting velocity. Although the be
havior of the vector model is much richer than that of
scalar counterpart, the general picture appears essentiall
same: the exponents are universal in the sense that the
pend on the exponents« and h, but do not depend on th
amplitudes in Eq.~2.6! and forcing~2.3!; the exponents re
lated to anisotropic contributions show a hierarchy related
the degree of anisotropy~more anisotropic contributions ar
less important!; this hierarchy holds for all scaling regime
regardless of the values of the compressibility parametea
from Eq. ~2.5! and the pressure parameterA from Eq. ~2.1!.
Consider these points in more detail.

Scaling regimes and universality classes. Infrared
asymptotic behavior of our model is completely described
seven different scaling regimes, or universality classes, e
corresponding to a set of anomalous exponents. For
given set of the parameters«, h, anda, only one of these
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regimes can be realized, irrespective of the values of
amplitudesA0 ,g0 ,u0. Three regimes correspond to finit
correlation time of the advecting velocity field, and thr
regimes correspond to infinite correlation time~or time-
independent velocity!. Each of these two sets involve th
magnetic~pressureless! case, linearized NS equation, and t
model with a-dependent effective amplitude in front of th
stretching term; fora50 the latter gives the special mod
with no stretching term, whose rapid-change version w
studied, e.g., in Refs.@37,53,54#. The scaling exponents fo
these regimes depend on the exponents«,h and the ampli-
tudea, but they are independent of the values of the am
tudesA0 ,g0 ,u0. The remaining seventh regime correspon
to the rapid-change velocity~zero correlation time!, the cor-
responding exponents depend also onA0.

To avoid possible confusion we stress that the beha
specific to the aforementioned classes, e.g., magnetic m
with infinite correlation time, arises automatically when t
RG flow approaches the fixed point which is IR attractive
the given choice of parameters«,h,a; the frozen limit~2.9!
or the substitutionA051 are not performed in the origina
model and the parametersA0 ,g0 ,u0 are fixed at such finite
values. In particular, this means that the anomalous ex
nents in those regimes are independent of the correla
time ~more precisely, the ratio of the correlation time of th
velocity field and the turnover time for the scalar field, me
sured by the parameteru0; see the discussion in Ref.@41#!.
In this sense, one can speak about the universality of
anomalous exponents in our model.

Independence of the forcing: Zero-mode picture.As we
have seen, the critical dimensions of all composite opera
~5.9!, and therefore the corresponding anomalous expon
~including anisotropic sectors!, are independent of the forc
ing, specified by correlator~2.3!. In particular, this means
that they remain unchanged, when the stirring force in
~2.1! is replaced by the imposed mean constant field, suc
in Refs. @33,39#. The role of the forcing is to maintain th
steady state of the system and thus to provide nonzeroam-
plitudesfor the power-like terms with those universal exp
nents.

This behavior is already well known for the passive sca
fields @41,43# advected by velocity~2.6! or vector fields, ad-
vected by the zero-correlated velocity@33,39#.

In the language of the RG~which is equally applicable to
the case of a zero or finite correlation time! this is explained
as follows: the stirring force or the mean field do not en
into the diagrams that determine the renormalization of
erators~5.9!, so that their dimensions are independent of
forcing. Similar diagrams determine the contributions
those operators into the operator-product expansions~6.1!,
which are nontrivial even for the unforced model. The d
ference is that for the unforced model, mean values of
operators vanish, and they give no contribution to the rig
hand sides of representations such as Eq.~6.4!. For the iso-
tropic correlator~2.3!, scalar operators acquire nonzero me
values and contribute to the right-hand side of Eq.~6.4!,
while for the anisotropic correlator or the imposed me
field, the mean values of irreducible tensor operators a
6-21
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become nonzero and their contributions are ‘‘activated’’
representations~6.4!.

For the case of zero correlation time, when the equal-t
correlations functions satisfy exact closed differential eq
tions, the above picture it is easily understood in the l
guage of the zero-mode approach@14#: forcing terms do not
affect the corresponding differential operators; thus
anomalous exponents, determined by the zero modes~solu-
tions of homogeneous unforced equations! also are indepen
dent of the forcing. On the contrary, theamplitudesare de-
termined by the matching of the inertial-range zero-mo
solution with the forced large-scale solutions, which is on
possible in the presence of the forcing terms.

The exact resemblance in the behavior of the rap
change models and the finite-correlated cases suggests
for the latter, the concept of zero modes~and thus of statis-
tical conservation laws! is also applicable, although the co
responding equations are not differential and involve infin
diagrammatic series.

Hierarchy of anisotropic contributions.In the presence o
the large-scale anisotropy~that is, the anisotropy introduce
at scales of orderL by the forcing!, correlation functions of
the model can be decomposed in irreducible representa
of the d-dimensional rotation group SO(d). Such a decom-
position naturally arises from the corresponding OPE, p
vided it is made in irreducible traceless tensor compo
operators; the rankl of a tensor operator can be used to lab
the terms of the SO(d) expansion and can be viewed as t
measure of anisotropy of the corresponding term~‘‘sector’’ !.
Thus each anisotropic sector is characterized by its own
of scaling exponents, the leading term is given by thel th
rank composite operator with minimal critical dimension.

Explicit expressions for these dimensions were obtai
to the first order in« andh. They reveal an hierarchy relate
to the degree of anisotropy: the higher is the rank of
operator~the more anisotropic is the contribution!, the larger
is the corresponding dimension, and thus the less impor
is its contribution to the inertial-range behavior.

This hierarchy, expressed by relations~5.14! or ~7.1!,
holds for all nontrivial scaling regimes of our model, a
values of the parametersa, A, d, and so on. It is similar to
the hierarchy relations derived earlier for the passive sc
@41,43,52# and magnetic fields@33,39,40# advected by the
Gaussian velocity ensembles.

In particular, this means that the overall leading term
given by the exponent from the isotropic sector, and it
therefore the same for the isotropic and anisotropic forci
It also should be stressed that the independence of the
ing behavior in different sectors is a direct consequence
the linearity of our model, independence of the exponents
the random force, and the SO(d) symmetry of the unforced
model. On the contrary, thehierarchyof the exponents fol-
lows from the explicit expressions, obtained only by prac
cal calculation.

According to the Kolmogorov-Obukhov theory@1,2#, the
anisotropy introduced at large scales by the forcing~bound-
ary conditions, geometry of an obstacle, etc.! dies out when
the energy is transferred down to smaller scales owing to
cascade mechanism~isotropization of the developed turbu
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lence in the inertial range!. The analytical results discusse
above confirm this classical concept and give a more qu
titative picture of the isotropization. The relevance of the
results for more realistic situations~scalar advected by the
two-dimensional NS field or the turbulent velocity itself! is
briefly discussed below.

Effects of compressibility.The anomalous exponents e
plicitly depend on the parametera>0 that measures the
compressibility of the fluid. For the regimes determined
the fixed pointsF1 ~magnetic model with finite correlation
time! andRA ~zero correlation time, with additional inequal
ties for the parameterA satisfied by the magnetic caseA
51 and its vicinity!, the hierarchy of anisotropic contribu
tions becomes less pronounced asa grows: the anisotropic
corrections in Eq.~6.4! become closer to each other and
the leading term asa grows. Thus the compressibility en
hances the penetration of the large-scale anisotropy into
inertial range. The situation is opposite for all the other
gimes, which arguably can be attributed to the influence
the pressure term.

Effects of pressure.The dependence on the parameterA,
which controls the pressure effects, is essentially differ
from the dependence ona: for the regimes with nonzero
correlation time, the value of the corresponding invaria
variable can take only discrete valuesA* 521, 1, a. The
behavior for the fixed pointA* 51, which corresponds to
the magnetic case~turbulence without pressure!, shows no
serious difference from the regimes with pressure. For
rapid-change limit, the exponents continuously depend onA,
and the value ofA51, where the pressure effects vanish,
not distinguished either.

Relevance for the NS turbulence.The picture outlined
above for passively advected fields~a superposition of powe
laws with universal exponents and nonuniversal amplitud!
seems rather general, being compatible with that establis
recently in the field of NS turbulence, on the basis of nume
cal simulations of channel flows and experiments in the
mospheric surface layer; see Refs.@57–62#, and references
therein. It was shown that the leading terms of the inert
range behavior are the same for isotropic and anisotro
forcing @57,58#. In the papers@59–62#, the velocity correla-
tion functions were decomposed in the irreducible repres
tations of the rotation group. It was argued that in each se
of the decomposition, scaling behavior can be found w
apparently universal exponents. The amplitudes of the v
ous contributions are nonuniversal, through the depende
on the position in the flow, the local degree of anisotropy a
inhomogeneity, and so on.

This is rather surprising because the equations for the
relation functions in such cases are neither closed nor iso
pic and homogeneous. Although the hierarchy similar to
~5.14! is demonstrated by the critical dimensions of certa
tensor operators in the stirred NS turbulence, see Sec. 2
Ref. @25#, the relationship between them and the anomal
exponents is not obvious there. It is worth recalling here t
the so-called ‘‘additive fusion rules,’’ hypothesized for th
NS turbulence in a number of papers, Refs.@16,17,26#, and
characteristic of the models with multifractal behavior~see
Ref. @27#!, arise naturally in the context of the models
6-22
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passive advection owing to theirlinearity. The existing re-
sults for the Burgers turbulence can also be interpreted n
rally as a consequence of similar fusion rules, where o
finite number of dangerous operators contributes to e
structure function, see Ref.@28#.

One can thus speculate that the anomalous scaling fo
genuine turbulence can also appear a as linear phenom
in the following sense. Let us split the total velocity field in
the two parts, the background field and the perturbation~e.g.,
large-scale and small-scale, or soft and hard compone!,
linearize the original stochastic equation with respect to
latter, choose an appropriate statistics for the former~e.g.,
Gaussian distribution with Kolmogorov exponents, the d
scription suggested for the large-scale field by the exp
ment!. Then the small-scale perturbation field will sho
anomalous scaling behavior with nontrivial exponents, wh
can be calculated systematically within a kind of« expan-
sion. The corrections due to the nonlinearity can be trea
perturbatively, and if they appear irrelevant~e.g., in the sense
of Wilson!, they will not affect the exponents calculate
within the linearized model. In such a case the passive ve
field can give the anomalous exponents for the NS velo
field exactly. In other words, such linearized model will b
long to the same universality class as the real NS equa
such as the simplified Ising or Heisenberg models are
lieved to belong to the same universality class as real fe
magnets or binary alloys. It thus might happen that
anomalous behavior of the real inertial-range turbulence
exactly described by one of the nontrivial fixed points for t
passive vector model.

Of course, one should not insist too much on such
simple scenario for the anomalous scaling, but it is worthy
attention. In this connection, we could also recall that
passive vector field can indeed reveal the anomalous e
nents of the stochastic NS velocity field if the random fo
ing of the former is chosen to be statistically correlated w
that of the latter; see@54#.

Validity of the « expansion and the applicability o
the model.A serious question is that of the validity of the«
expansion and the possibility of the extrapolation of t
results, obtained within the« expansions, to the finite value
«5O(1). For the rapid-change model, the« expan-
sion works surprisingly well. It was shown@29# that the
knowledge of three terms allows one to obtain reasona
predictions for finite«;1; even the plain« expansion cap-
tures some subtle qualitative features of the anomalous
ponents established in analytical and numerical solution
the exact zero-mode equations and numerical experime
The agreement can be further improved by using spe
tricks ~such as the ‘‘inverse’’« expansion! or interpolation
formulas@29#.

In the case of the Gaussian model with a finite correlat
time, however, there is a natural upper bound for the rang
validity of the results, obtained within the« expansion: for
«.1 the velocity field~and hence all its powers! become
dangerous~its critical dimensionDv512«, known exactly
due to the Gaussianity, becomes negative!. The spectrum of
their dimensions is unbounded from below, and in order
find the small-mr behavior one has to sum up all their co
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tributions in the representations such as in Eq.~6.4!. This
problem is discussed in detail in Ref.@41# for the passive
scalar field; the infrared perturbation theory was employ
there to perform the required summation for the pair cor
lation function, in the frozen regime, and within the one-lo
approximation for the Wilson coefficients. It was argued th
in that special case, anomalous behavior is described by
same exponent below and above the boundary«51, but in
general the problem remains open.

Physically, this is a manifestation of the fact that for«.1,
the so-called sweeping effects~kinematic transfer of the
small-scale turbulent eddies by the large-scale ones! become
important. In a Galilean-covariant problem such compos
operators would not give any contribution into the Galilea
invariant quantities~structure functions!, as it happens in the
RG approach to the stochastic NS equation; see the dis
sion in Refs.@23,45#. As was pointed out in Ref.@46#, the
Gaussian model with finite correlation time suffers from t
lack of Galilean invariance and therefore misrepresents
sweeping effects: they penetrate into the correlation fu
tions of the scalar and can lead to their strong unphys
dependence onL. Therefore the value«51 can also be
viewed as the threshold above which the model itself
comes unphysical.~To justify the Gaussian model for«.1,
however, one may recall that the results of Ref.@46# show
that it gives a reasonable description of the passive advec
in an appropriate frame, where the mean velocity field v
ishes.!

We may therefore conclude that the next important ste
the analytical derivation of anomalous exponents of a p
sive scalar and vector quantities advected by the Galil
covariant velocity ensemble, generated by the stochastic
equation; this work is now in progress.
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